Model for wireless magnetoelastic strain sensors

Detalhes bibliográficos
Autor(a) principal: Bastos, Eduardo Stimamiglio
Data de Publicação: 2020
Outros Autores: Nunes, Cristina Bormio, Clarke, Thomas Gabriel Rosauro, Missell, Frank Patrick
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/221187
Resumo: This paper describes a magnetoelastic strain sensor based on the ∆E effect and discusses some materials used in its construction. A polycrystalline Fe–Al–B alloy with good quality magnetoelastic properties was used as the transducer and glued to the test object, either brass plates or rods of SAE 1010 steel. The strain-dependent magnetic field of the transducer changes the operating point of the resonator, a strip of field-annealed Metglas 2826MB3, resulting in a modification of its resonant frequency. A model was developed to simulate the strain-dependent magnetic field acting on the resonator and thus to calculate curves of resonant frequency vs. deformation. With the help of this model, differences in the shape of the frequency vs. strain curve can be understood. For a sensor with resonant frequency of 60.5 kHz glued to a rod of SAE 1010 steel, a total resonant frequency variation ∆f ~7 kHz was observed for a deformation of 1100 ppm. The geometry of this sensor is especially favorable for the remote monitoring of a steel surface, such as the wires of the tensile armor of a marine riser.
id UFRGS-2_dcc2d4ca930018dabb06057205d17aeb
oai_identifier_str oai:www.lume.ufrgs.br:10183/221187
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Bastos, Eduardo StimamiglioNunes, Cristina BormioClarke, Thomas Gabriel RosauroMissell, Frank Patrick2021-05-18T04:36:10Z20201424-8220http://hdl.handle.net/10183/221187001125490This paper describes a magnetoelastic strain sensor based on the ∆E effect and discusses some materials used in its construction. A polycrystalline Fe–Al–B alloy with good quality magnetoelastic properties was used as the transducer and glued to the test object, either brass plates or rods of SAE 1010 steel. The strain-dependent magnetic field of the transducer changes the operating point of the resonator, a strip of field-annealed Metglas 2826MB3, resulting in a modification of its resonant frequency. A model was developed to simulate the strain-dependent magnetic field acting on the resonator and thus to calculate curves of resonant frequency vs. deformation. With the help of this model, differences in the shape of the frequency vs. strain curve can be understood. For a sensor with resonant frequency of 60.5 kHz glued to a rod of SAE 1010 steel, a total resonant frequency variation ∆f ~7 kHz was observed for a deformation of 1100 ppm. The geometry of this sensor is especially favorable for the remote monitoring of a steel surface, such as the wires of the tensile armor of a marine riser.application/pdfengSensors [recurso eletrônico]. Basel. Vol. 20, n. 12 (2020), Art. 3557, 12 p.Sensores magnéticosFe–Al–BMagnetoelasticMagnetostrictionMetglas 2826MB3SteelStrain sensorModel for wireless magnetoelastic strain sensorsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001125490.pdf.txt001125490.pdf.txtExtracted Texttext/plain59364http://www.lume.ufrgs.br/bitstream/10183/221187/2/001125490.pdf.txt5c2429fd95069007c89a2f8516c50462MD52ORIGINAL001125490.pdfTexto completo (inglês)application/pdf1100085http://www.lume.ufrgs.br/bitstream/10183/221187/1/001125490.pdfc5ca79c7c1a14d2318f1ec055a27c06fMD5110183/2211872021-05-26 04:33:57.219971oai:www.lume.ufrgs.br:10183/221187Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-05-26T07:33:57Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Model for wireless magnetoelastic strain sensors
title Model for wireless magnetoelastic strain sensors
spellingShingle Model for wireless magnetoelastic strain sensors
Bastos, Eduardo Stimamiglio
Sensores magnéticos
Fe–Al–B
Magnetoelastic
Magnetostriction
Metglas 2826MB3
Steel
Strain sensor
title_short Model for wireless magnetoelastic strain sensors
title_full Model for wireless magnetoelastic strain sensors
title_fullStr Model for wireless magnetoelastic strain sensors
title_full_unstemmed Model for wireless magnetoelastic strain sensors
title_sort Model for wireless magnetoelastic strain sensors
author Bastos, Eduardo Stimamiglio
author_facet Bastos, Eduardo Stimamiglio
Nunes, Cristina Bormio
Clarke, Thomas Gabriel Rosauro
Missell, Frank Patrick
author_role author
author2 Nunes, Cristina Bormio
Clarke, Thomas Gabriel Rosauro
Missell, Frank Patrick
author2_role author
author
author
dc.contributor.author.fl_str_mv Bastos, Eduardo Stimamiglio
Nunes, Cristina Bormio
Clarke, Thomas Gabriel Rosauro
Missell, Frank Patrick
dc.subject.por.fl_str_mv Sensores magnéticos
topic Sensores magnéticos
Fe–Al–B
Magnetoelastic
Magnetostriction
Metglas 2826MB3
Steel
Strain sensor
dc.subject.eng.fl_str_mv Fe–Al–B
Magnetoelastic
Magnetostriction
Metglas 2826MB3
Steel
Strain sensor
description This paper describes a magnetoelastic strain sensor based on the ∆E effect and discusses some materials used in its construction. A polycrystalline Fe–Al–B alloy with good quality magnetoelastic properties was used as the transducer and glued to the test object, either brass plates or rods of SAE 1010 steel. The strain-dependent magnetic field of the transducer changes the operating point of the resonator, a strip of field-annealed Metglas 2826MB3, resulting in a modification of its resonant frequency. A model was developed to simulate the strain-dependent magnetic field acting on the resonator and thus to calculate curves of resonant frequency vs. deformation. With the help of this model, differences in the shape of the frequency vs. strain curve can be understood. For a sensor with resonant frequency of 60.5 kHz glued to a rod of SAE 1010 steel, a total resonant frequency variation ∆f ~7 kHz was observed for a deformation of 1100 ppm. The geometry of this sensor is especially favorable for the remote monitoring of a steel surface, such as the wires of the tensile armor of a marine riser.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2021-05-18T04:36:10Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/221187
dc.identifier.issn.pt_BR.fl_str_mv 1424-8220
dc.identifier.nrb.pt_BR.fl_str_mv 001125490
identifier_str_mv 1424-8220
001125490
url http://hdl.handle.net/10183/221187
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Sensors [recurso eletrônico]. Basel. Vol. 20, n. 12 (2020), Art. 3557, 12 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/221187/2/001125490.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/221187/1/001125490.pdf
bitstream.checksum.fl_str_mv 5c2429fd95069007c89a2f8516c50462
c5ca79c7c1a14d2318f1ec055a27c06f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447742546182144