Semiclassical structure of chaotic resonance eigenfunctions

Detalhes bibliográficos
Autor(a) principal: Keating, Jonathan Philipe
Data de Publicação: 2006
Outros Autores: Novaes, Marcel, Prado, Sandra Denise, Sieber, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/99395
Resumo: We study the resonance (or Gamow) eigenstates of open chaotic systems in the semiclassical limit, distinguishing between left and right eigenstates of the nonunitary quantum propagator and also between short-lived and long-lived states. The long-lived left (right) eigenstates are shown to concentrate as @ ! 0 on the forward (backward) trapped set of the classical dynamics. The limit of a sequence of eigenstates {Ψ(h)} h→0 is found to exhibit a remarkably rich structure in phase space that depends on the corresponding limiting decay rate. These results are illustrated for the open baker’s map, for which the probability density in position space is observed to have self-similarity properties.
id UFRGS-2_df743ee6dcaa0a917134c02b35d68964
oai_identifier_str oai:www.lume.ufrgs.br:10183/99395
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Keating, Jonathan PhilipeNovaes, MarcelPrado, Sandra DeniseSieber, M.2014-08-09T02:11:31Z20060031-9007http://hdl.handle.net/10183/99395000560482We study the resonance (or Gamow) eigenstates of open chaotic systems in the semiclassical limit, distinguishing between left and right eigenstates of the nonunitary quantum propagator and also between short-lived and long-lived states. The long-lived left (right) eigenstates are shown to concentrate as @ ! 0 on the forward (backward) trapped set of the classical dynamics. The limit of a sequence of eigenstates {Ψ(h)} h→0 is found to exhibit a remarkably rich structure in phase space that depends on the corresponding limiting decay rate. These results are illustrated for the open baker’s map, for which the probability density in position space is observed to have self-similarity properties.application/pdfengPhysical review letters. Vol. 97, no. 15 (Oct. 2006), 150406 4p.CaosAutovalores e autofunçõesTeoria quânticaSistemas caóticosSemiclassical structure of chaotic resonance eigenfunctionsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000560482.pdf000560482.pdfTexto completo (inglês)application/pdf569099http://www.lume.ufrgs.br/bitstream/10183/99395/1/000560482.pdf9828166568da2c68fe3efa6f0291d6f8MD51TEXT000560482.pdf.txt000560482.pdf.txtExtracted Texttext/plain20541http://www.lume.ufrgs.br/bitstream/10183/99395/2/000560482.pdf.txt391ab2543be5d6a90a588b0fbb48a13eMD52THUMBNAIL000560482.pdf.jpg000560482.pdf.jpgGenerated Thumbnailimage/jpeg2202http://www.lume.ufrgs.br/bitstream/10183/99395/3/000560482.pdf.jpg2024b1928b3b272efc6fb7e7dd8e9e0bMD5310183/993952024-09-11 06:17:46.431685oai:www.lume.ufrgs.br:10183/99395Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-09-11T09:17:46Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Semiclassical structure of chaotic resonance eigenfunctions
title Semiclassical structure of chaotic resonance eigenfunctions
spellingShingle Semiclassical structure of chaotic resonance eigenfunctions
Keating, Jonathan Philipe
Caos
Autovalores e autofunções
Teoria quântica
Sistemas caóticos
title_short Semiclassical structure of chaotic resonance eigenfunctions
title_full Semiclassical structure of chaotic resonance eigenfunctions
title_fullStr Semiclassical structure of chaotic resonance eigenfunctions
title_full_unstemmed Semiclassical structure of chaotic resonance eigenfunctions
title_sort Semiclassical structure of chaotic resonance eigenfunctions
author Keating, Jonathan Philipe
author_facet Keating, Jonathan Philipe
Novaes, Marcel
Prado, Sandra Denise
Sieber, M.
author_role author
author2 Novaes, Marcel
Prado, Sandra Denise
Sieber, M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Keating, Jonathan Philipe
Novaes, Marcel
Prado, Sandra Denise
Sieber, M.
dc.subject.por.fl_str_mv Caos
Autovalores e autofunções
Teoria quântica
Sistemas caóticos
topic Caos
Autovalores e autofunções
Teoria quântica
Sistemas caóticos
description We study the resonance (or Gamow) eigenstates of open chaotic systems in the semiclassical limit, distinguishing between left and right eigenstates of the nonunitary quantum propagator and also between short-lived and long-lived states. The long-lived left (right) eigenstates are shown to concentrate as @ ! 0 on the forward (backward) trapped set of the classical dynamics. The limit of a sequence of eigenstates {Ψ(h)} h→0 is found to exhibit a remarkably rich structure in phase space that depends on the corresponding limiting decay rate. These results are illustrated for the open baker’s map, for which the probability density in position space is observed to have self-similarity properties.
publishDate 2006
dc.date.issued.fl_str_mv 2006
dc.date.accessioned.fl_str_mv 2014-08-09T02:11:31Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/99395
dc.identifier.issn.pt_BR.fl_str_mv 0031-9007
dc.identifier.nrb.pt_BR.fl_str_mv 000560482
identifier_str_mv 0031-9007
000560482
url http://hdl.handle.net/10183/99395
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review letters. Vol. 97, no. 15 (Oct. 2006), 150406 4p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/99395/1/000560482.pdf
http://www.lume.ufrgs.br/bitstream/10183/99395/2/000560482.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/99395/3/000560482.pdf.jpg
bitstream.checksum.fl_str_mv 9828166568da2c68fe3efa6f0291d6f8
391ab2543be5d6a90a588b0fbb48a13e
2024b1928b3b272efc6fb7e7dd8e9e0b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447553239416832