Phase-adaptive superresolution of mammographic images using complex wavelets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27631 |
Resumo: | This correspondence describes a new superresolution approach for enhancing the resolution of mammographic images using complex wavelet frequency information. This method allows regions of interest of a mammographic image to be viewed in enhanced resolution while reducing the patient exposure to radiation. The proposed method exploits the structural characteristics of breast tissues being imaged and produces higher resolution mammographic images with sufficient visual fidelity that fine image details can be discriminated more easily. In our approach, the superresolution problem is formulated as a constrained optimization problem using a third-order Markov prior model and adapts the priors based on the phase variations of the low-resolution mammographic images. Experimental results indicate the proposed method is more effective at preserving the visual information when compared with existing resolution enhancement methods. |
id |
UFRGS-2_e1e6ebc6b95e9eb5fcb0f96e9859ddec |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27631 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Wong, AlexanderScharcanski, Jacob2011-01-29T06:00:46Z20091057-7149http://hdl.handle.net/10183/27631000741888This correspondence describes a new superresolution approach for enhancing the resolution of mammographic images using complex wavelet frequency information. This method allows regions of interest of a mammographic image to be viewed in enhanced resolution while reducing the patient exposure to radiation. The proposed method exploits the structural characteristics of breast tissues being imaged and produces higher resolution mammographic images with sufficient visual fidelity that fine image details can be discriminated more easily. In our approach, the superresolution problem is formulated as a constrained optimization problem using a third-order Markov prior model and adapts the priors based on the phase variations of the low-resolution mammographic images. Experimental results indicate the proposed method is more effective at preserving the visual information when compared with existing resolution enhancement methods.application/pdfengIEEE transactions on image processing. New York. Vol. 18, no 5 (May 2009), p. 1140-1146Computação gráficaProcessamento de imagensAdaptiveMammographyPhaseSuperresolutionPhase-adaptive superresolution of mammographic images using complex waveletsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000741888.pdf.txt000741888.pdf.txtExtracted Texttext/plain36436http://www.lume.ufrgs.br/bitstream/10183/27631/2/000741888.pdf.txta455997f71e54b6cc850e1cf8543a751MD52ORIGINAL000741888.pdf000741888.pdfTexto completo (inglês)application/pdf2294652http://www.lume.ufrgs.br/bitstream/10183/27631/1/000741888.pdf158e8b1848010f2441160f93489a8ba5MD51THUMBNAIL000741888.pdf.jpg000741888.pdf.jpgGenerated Thumbnailimage/jpeg2180http://www.lume.ufrgs.br/bitstream/10183/27631/3/000741888.pdf.jpg8813e0ce4f3a1c1406456a33f240ae20MD5310183/276312021-05-26 04:28:57.586322oai:www.lume.ufrgs.br:10183/27631Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-05-26T07:28:57Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Phase-adaptive superresolution of mammographic images using complex wavelets |
title |
Phase-adaptive superresolution of mammographic images using complex wavelets |
spellingShingle |
Phase-adaptive superresolution of mammographic images using complex wavelets Wong, Alexander Computação gráfica Processamento de imagens Adaptive Mammography Phase Superresolution |
title_short |
Phase-adaptive superresolution of mammographic images using complex wavelets |
title_full |
Phase-adaptive superresolution of mammographic images using complex wavelets |
title_fullStr |
Phase-adaptive superresolution of mammographic images using complex wavelets |
title_full_unstemmed |
Phase-adaptive superresolution of mammographic images using complex wavelets |
title_sort |
Phase-adaptive superresolution of mammographic images using complex wavelets |
author |
Wong, Alexander |
author_facet |
Wong, Alexander Scharcanski, Jacob |
author_role |
author |
author2 |
Scharcanski, Jacob |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Wong, Alexander Scharcanski, Jacob |
dc.subject.por.fl_str_mv |
Computação gráfica Processamento de imagens |
topic |
Computação gráfica Processamento de imagens Adaptive Mammography Phase Superresolution |
dc.subject.eng.fl_str_mv |
Adaptive Mammography Phase Superresolution |
description |
This correspondence describes a new superresolution approach for enhancing the resolution of mammographic images using complex wavelet frequency information. This method allows regions of interest of a mammographic image to be viewed in enhanced resolution while reducing the patient exposure to radiation. The proposed method exploits the structural characteristics of breast tissues being imaged and produces higher resolution mammographic images with sufficient visual fidelity that fine image details can be discriminated more easily. In our approach, the superresolution problem is formulated as a constrained optimization problem using a third-order Markov prior model and adapts the priors based on the phase variations of the low-resolution mammographic images. Experimental results indicate the proposed method is more effective at preserving the visual information when compared with existing resolution enhancement methods. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009 |
dc.date.accessioned.fl_str_mv |
2011-01-29T06:00:46Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27631 |
dc.identifier.issn.pt_BR.fl_str_mv |
1057-7149 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000741888 |
identifier_str_mv |
1057-7149 000741888 |
url |
http://hdl.handle.net/10183/27631 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
IEEE transactions on image processing. New York. Vol. 18, no 5 (May 2009), p. 1140-1146 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27631/2/000741888.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27631/1/000741888.pdf http://www.lume.ufrgs.br/bitstream/10183/27631/3/000741888.pdf.jpg |
bitstream.checksum.fl_str_mv |
a455997f71e54b6cc850e1cf8543a751 158e8b1848010f2441160f93489a8ba5 8813e0ce4f3a1c1406456a33f240ae20 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447422608867328 |