Phase-adaptive superresolution of mammographic images using complex wavelets

Detalhes bibliográficos
Autor(a) principal: Wong, Alexander
Data de Publicação: 2009
Outros Autores: Scharcanski, Jacob
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/27631
Resumo: This correspondence describes a new superresolution approach for enhancing the resolution of mammographic images using complex wavelet frequency information. This method allows regions of interest of a mammographic image to be viewed in enhanced resolution while reducing the patient exposure to radiation. The proposed method exploits the structural characteristics of breast tissues being imaged and produces higher resolution mammographic images with sufficient visual fidelity that fine image details can be discriminated more easily. In our approach, the superresolution problem is formulated as a constrained optimization problem using a third-order Markov prior model and adapts the priors based on the phase variations of the low-resolution mammographic images. Experimental results indicate the proposed method is more effective at preserving the visual information when compared with existing resolution enhancement methods.
id UFRGS-2_e1e6ebc6b95e9eb5fcb0f96e9859ddec
oai_identifier_str oai:www.lume.ufrgs.br:10183/27631
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Wong, AlexanderScharcanski, Jacob2011-01-29T06:00:46Z20091057-7149http://hdl.handle.net/10183/27631000741888This correspondence describes a new superresolution approach for enhancing the resolution of mammographic images using complex wavelet frequency information. This method allows regions of interest of a mammographic image to be viewed in enhanced resolution while reducing the patient exposure to radiation. The proposed method exploits the structural characteristics of breast tissues being imaged and produces higher resolution mammographic images with sufficient visual fidelity that fine image details can be discriminated more easily. In our approach, the superresolution problem is formulated as a constrained optimization problem using a third-order Markov prior model and adapts the priors based on the phase variations of the low-resolution mammographic images. Experimental results indicate the proposed method is more effective at preserving the visual information when compared with existing resolution enhancement methods.application/pdfengIEEE transactions on image processing. New York. Vol. 18, no 5 (May 2009), p. 1140-1146Computação gráficaProcessamento de imagensAdaptiveMammographyPhaseSuperresolutionPhase-adaptive superresolution of mammographic images using complex waveletsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000741888.pdf.txt000741888.pdf.txtExtracted Texttext/plain36436http://www.lume.ufrgs.br/bitstream/10183/27631/2/000741888.pdf.txta455997f71e54b6cc850e1cf8543a751MD52ORIGINAL000741888.pdf000741888.pdfTexto completo (inglês)application/pdf2294652http://www.lume.ufrgs.br/bitstream/10183/27631/1/000741888.pdf158e8b1848010f2441160f93489a8ba5MD51THUMBNAIL000741888.pdf.jpg000741888.pdf.jpgGenerated Thumbnailimage/jpeg2180http://www.lume.ufrgs.br/bitstream/10183/27631/3/000741888.pdf.jpg8813e0ce4f3a1c1406456a33f240ae20MD5310183/276312021-05-26 04:28:57.586322oai:www.lume.ufrgs.br:10183/27631Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-05-26T07:28:57Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Phase-adaptive superresolution of mammographic images using complex wavelets
title Phase-adaptive superresolution of mammographic images using complex wavelets
spellingShingle Phase-adaptive superresolution of mammographic images using complex wavelets
Wong, Alexander
Computação gráfica
Processamento de imagens
Adaptive
Mammography
Phase
Superresolution
title_short Phase-adaptive superresolution of mammographic images using complex wavelets
title_full Phase-adaptive superresolution of mammographic images using complex wavelets
title_fullStr Phase-adaptive superresolution of mammographic images using complex wavelets
title_full_unstemmed Phase-adaptive superresolution of mammographic images using complex wavelets
title_sort Phase-adaptive superresolution of mammographic images using complex wavelets
author Wong, Alexander
author_facet Wong, Alexander
Scharcanski, Jacob
author_role author
author2 Scharcanski, Jacob
author2_role author
dc.contributor.author.fl_str_mv Wong, Alexander
Scharcanski, Jacob
dc.subject.por.fl_str_mv Computação gráfica
Processamento de imagens
topic Computação gráfica
Processamento de imagens
Adaptive
Mammography
Phase
Superresolution
dc.subject.eng.fl_str_mv Adaptive
Mammography
Phase
Superresolution
description This correspondence describes a new superresolution approach for enhancing the resolution of mammographic images using complex wavelet frequency information. This method allows regions of interest of a mammographic image to be viewed in enhanced resolution while reducing the patient exposure to radiation. The proposed method exploits the structural characteristics of breast tissues being imaged and produces higher resolution mammographic images with sufficient visual fidelity that fine image details can be discriminated more easily. In our approach, the superresolution problem is formulated as a constrained optimization problem using a third-order Markov prior model and adapts the priors based on the phase variations of the low-resolution mammographic images. Experimental results indicate the proposed method is more effective at preserving the visual information when compared with existing resolution enhancement methods.
publishDate 2009
dc.date.issued.fl_str_mv 2009
dc.date.accessioned.fl_str_mv 2011-01-29T06:00:46Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27631
dc.identifier.issn.pt_BR.fl_str_mv 1057-7149
dc.identifier.nrb.pt_BR.fl_str_mv 000741888
identifier_str_mv 1057-7149
000741888
url http://hdl.handle.net/10183/27631
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IEEE transactions on image processing. New York. Vol. 18, no 5 (May 2009), p. 1140-1146
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27631/2/000741888.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27631/1/000741888.pdf
http://www.lume.ufrgs.br/bitstream/10183/27631/3/000741888.pdf.jpg
bitstream.checksum.fl_str_mv a455997f71e54b6cc850e1cf8543a751
158e8b1848010f2441160f93489a8ba5
8813e0ce4f3a1c1406456a33f240ae20
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447422608867328