Prime ideals in polinomial rings in several indeterminates
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/27486 |
Resumo: | If P is a prime ideal of a polynomial ring K[x], where K is a field, then P is determined by an irreducible polynomial in K[x]. The purpose of this paper is to show that any prime ideal of a polynomial ring in n-indeterminates over a not necessarily commutative ring R is determined by its intersection with R plus n polynomials. |
id |
UFRGS-2_e3269f44e7ac229b1a3c12ca4d567f8e |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27486 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Ferrero, Miguel Angel Alberto2011-01-26T05:59:12Z19970002-9939http://hdl.handle.net/10183/27486000098005If P is a prime ideal of a polynomial ring K[x], where K is a field, then P is determined by an irreducible polynomial in K[x]. The purpose of this paper is to show that any prime ideal of a polynomial ring in n-indeterminates over a not necessarily commutative ring R is determined by its intersection with R plus n polynomials.application/pdfengProceedings of the American Mathematical Society. Providence, RI. Vol. 125, no. 1 (jan. 1997), p. 67-74.Ideais primos : Aneis polinomiaisPrime ideals in polinomial rings in several indeterminatesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000098005.pdf000098005.pdfTexto completo (inglês)application/pdf196394http://www.lume.ufrgs.br/bitstream/10183/27486/1/000098005.pdf00a0b7e6ef552254d6f11259704c8d43MD51TEXT000098005.pdf.txt000098005.pdf.txtExtracted Texttext/plain21787http://www.lume.ufrgs.br/bitstream/10183/27486/2/000098005.pdf.txt7b956d50ff82856aaaeb5b74ad62aec8MD52THUMBNAIL000098005.pdf.jpg000098005.pdf.jpgGenerated Thumbnailimage/jpeg1590http://www.lume.ufrgs.br/bitstream/10183/27486/3/000098005.pdf.jpgc69f367993bb5163061912a16b471597MD5310183/274862021-06-26 04:43:05.736447oai:www.lume.ufrgs.br:10183/27486Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:43:05Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Prime ideals in polinomial rings in several indeterminates |
title |
Prime ideals in polinomial rings in several indeterminates |
spellingShingle |
Prime ideals in polinomial rings in several indeterminates Ferrero, Miguel Angel Alberto Ideais primos : Aneis polinomiais |
title_short |
Prime ideals in polinomial rings in several indeterminates |
title_full |
Prime ideals in polinomial rings in several indeterminates |
title_fullStr |
Prime ideals in polinomial rings in several indeterminates |
title_full_unstemmed |
Prime ideals in polinomial rings in several indeterminates |
title_sort |
Prime ideals in polinomial rings in several indeterminates |
author |
Ferrero, Miguel Angel Alberto |
author_facet |
Ferrero, Miguel Angel Alberto |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ferrero, Miguel Angel Alberto |
dc.subject.por.fl_str_mv |
Ideais primos : Aneis polinomiais |
topic |
Ideais primos : Aneis polinomiais |
description |
If P is a prime ideal of a polynomial ring K[x], where K is a field, then P is determined by an irreducible polynomial in K[x]. The purpose of this paper is to show that any prime ideal of a polynomial ring in n-indeterminates over a not necessarily commutative ring R is determined by its intersection with R plus n polynomials. |
publishDate |
1997 |
dc.date.issued.fl_str_mv |
1997 |
dc.date.accessioned.fl_str_mv |
2011-01-26T05:59:12Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27486 |
dc.identifier.issn.pt_BR.fl_str_mv |
0002-9939 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000098005 |
identifier_str_mv |
0002-9939 000098005 |
url |
http://hdl.handle.net/10183/27486 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Proceedings of the American Mathematical Society. Providence, RI. Vol. 125, no. 1 (jan. 1997), p. 67-74. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27486/1/000098005.pdf http://www.lume.ufrgs.br/bitstream/10183/27486/2/000098005.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27486/3/000098005.pdf.jpg |
bitstream.checksum.fl_str_mv |
00a0b7e6ef552254d6f11259704c8d43 7b956d50ff82856aaaeb5b74ad62aec8 c69f367993bb5163061912a16b471597 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447421990207488 |