Infinite hierarchies of nonlinearly dependent periodic orbits

Detalhes bibliográficos
Autor(a) principal: Gallas, Jason Alfredo Carlson
Data de Publicação: 2001
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/103652
Resumo: Quadratic maps are used to show explicitly that the skeleton of unstable periodic orbits underlying classical and quantum dynamics is stratified into a doubly infinite hierarchy of orbits inherited from a set of basic ‘‘seeds’’ through certain nonlinear transformations Tα(x). The hierarchy contains nonunique substructurings which arise from the different possibilities of sequencing the transformations Tα(x). The structuring of the orbital skeleton is shown to be generic for Abelian equations, i.e., for all dynamical systems generated by iterating rational functions.
id UFRGS-2_f3c0bb12f054b4885c658c43926906a6
oai_identifier_str oai:www.lume.ufrgs.br:10183/103652
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Gallas, Jason Alfredo Carlson2014-09-23T02:12:38Z20011539-3755http://hdl.handle.net/10183/103652000281944Quadratic maps are used to show explicitly that the skeleton of unstable periodic orbits underlying classical and quantum dynamics is stratified into a doubly infinite hierarchy of orbits inherited from a set of basic ‘‘seeds’’ through certain nonlinear transformations Tα(x). The hierarchy contains nonunique substructurings which arise from the different possibilities of sequencing the transformations Tα(x). The structuring of the orbital skeleton is shown to be generic for Abelian equations, i.e., for all dynamical systems generated by iterating rational functions.application/pdfengPhysical review. E, Statistical, nonlinear, and soft matter physics. Vol. 63, no. 1 (Jan. 2001), 016216, 5 p.FísicaInfinite hierarchies of nonlinearly dependent periodic orbitsEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000281944.pdf000281944.pdfTexto completo (inglês)application/pdf61105http://www.lume.ufrgs.br/bitstream/10183/103652/1/000281944.pdfd9b1b1e7765c9f8577745a8cc260a31aMD51TEXT000281944.pdf.txt000281944.pdf.txtExtracted Texttext/plain20875http://www.lume.ufrgs.br/bitstream/10183/103652/2/000281944.pdf.txt3fb0d3ed82cc5d026e3834223db28410MD52THUMBNAIL000281944.pdf.jpg000281944.pdf.jpgGenerated Thumbnailimage/jpeg1944http://www.lume.ufrgs.br/bitstream/10183/103652/3/000281944.pdf.jpg6e7e5b77b532d204d24a89e694fa8b75MD5310183/1036522024-03-28 06:25:21.043265oai:www.lume.ufrgs.br:10183/103652Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-28T09:25:21Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Infinite hierarchies of nonlinearly dependent periodic orbits
title Infinite hierarchies of nonlinearly dependent periodic orbits
spellingShingle Infinite hierarchies of nonlinearly dependent periodic orbits
Gallas, Jason Alfredo Carlson
Física
title_short Infinite hierarchies of nonlinearly dependent periodic orbits
title_full Infinite hierarchies of nonlinearly dependent periodic orbits
title_fullStr Infinite hierarchies of nonlinearly dependent periodic orbits
title_full_unstemmed Infinite hierarchies of nonlinearly dependent periodic orbits
title_sort Infinite hierarchies of nonlinearly dependent periodic orbits
author Gallas, Jason Alfredo Carlson
author_facet Gallas, Jason Alfredo Carlson
author_role author
dc.contributor.author.fl_str_mv Gallas, Jason Alfredo Carlson
dc.subject.por.fl_str_mv Física
topic Física
description Quadratic maps are used to show explicitly that the skeleton of unstable periodic orbits underlying classical and quantum dynamics is stratified into a doubly infinite hierarchy of orbits inherited from a set of basic ‘‘seeds’’ through certain nonlinear transformations Tα(x). The hierarchy contains nonunique substructurings which arise from the different possibilities of sequencing the transformations Tα(x). The structuring of the orbital skeleton is shown to be generic for Abelian equations, i.e., for all dynamical systems generated by iterating rational functions.
publishDate 2001
dc.date.issued.fl_str_mv 2001
dc.date.accessioned.fl_str_mv 2014-09-23T02:12:38Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/103652
dc.identifier.issn.pt_BR.fl_str_mv 1539-3755
dc.identifier.nrb.pt_BR.fl_str_mv 000281944
identifier_str_mv 1539-3755
000281944
url http://hdl.handle.net/10183/103652
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Physical review. E, Statistical, nonlinear, and soft matter physics. Vol. 63, no. 1 (Jan. 2001), 016216, 5 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/103652/1/000281944.pdf
http://www.lume.ufrgs.br/bitstream/10183/103652/2/000281944.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/103652/3/000281944.pdf.jpg
bitstream.checksum.fl_str_mv d9b1b1e7765c9f8577745a8cc260a31a
3fb0d3ed82cc5d026e3834223db28410
6e7e5b77b532d204d24a89e694fa8b75
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447560711569408