Graph Neural Networks for image classification : comparing approaches for building graphs

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Julia Pelayo
Data de Publicação: 2024
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/274081
Resumo: Redes Neurais de Grafos (GNNs) são uma abordagem que permite aplicar técnicas de aprendizado profundo a dados não-euclidianos, como grafos e variedades. Nos últimos anos, Redes Convolucionais de Grafos (GCNs) e Redes de Atenção a Grafos (GATs), entre outros tipos de GNNs convolucionais, têm sido aplicados a problemas de classi ficação de imagens. Para isso, as imagens devem ser representadas como grafos. Esse processo geralmente envolve a sobre-segmentação de imagens em regiões não-regulares chamadas superpixeis, que são mapeadas para vértices do grafo, descritas por atributos que representam as informações do superpixel e conectadas a outros vértices em vizi nhanças. No entanto, existem diversas maneiras de transformar imagens em grafos. Este trabalho trata da aplicação de GCNs e GATs a problemas de classificação de imagens sobre-segmentadas em superpixels. Avaliamos sistematicamente o impacto de diferentes abordagens para representar imagens como grafos no desempenho alcançado por modelos GCN e GAT simples, comparando também as diferenças entre estes. Em particular, anali samos os impactos do grau de segmentação da imagem (ou, equivalentemente, do número de vértices do grafo), do conjunto de atributos escolhidos para representar cada superpi xel como vértice e do método para construir as arestas entre os vértices. Concluímos que o desempenho é positivamente impactado ao aumentar o número de vértices, considerar conjuntos ricos de atributos e considerar apenas conexões entre regiões semelhantes no grafo para GCNs e para GATs de um único foco de atenção, enquanto modelos GATs de vários focos podem se beneficiar das informações de regiões vizinhas e da informação de adjacência fornecidas pelos grafos de regiões adjacentes.
id UFRGS-2_fc6323b693258cc4c9abb7ba48e7dcc5
oai_identifier_str oai:www.lume.ufrgs.br:10183/274081
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Rodrigues, Julia PelayoCarbonera, Joel Luis2024-03-22T05:07:15Z2024http://hdl.handle.net/10183/274081001197761Redes Neurais de Grafos (GNNs) são uma abordagem que permite aplicar técnicas de aprendizado profundo a dados não-euclidianos, como grafos e variedades. Nos últimos anos, Redes Convolucionais de Grafos (GCNs) e Redes de Atenção a Grafos (GATs), entre outros tipos de GNNs convolucionais, têm sido aplicados a problemas de classi ficação de imagens. Para isso, as imagens devem ser representadas como grafos. Esse processo geralmente envolve a sobre-segmentação de imagens em regiões não-regulares chamadas superpixeis, que são mapeadas para vértices do grafo, descritas por atributos que representam as informações do superpixel e conectadas a outros vértices em vizi nhanças. No entanto, existem diversas maneiras de transformar imagens em grafos. Este trabalho trata da aplicação de GCNs e GATs a problemas de classificação de imagens sobre-segmentadas em superpixels. Avaliamos sistematicamente o impacto de diferentes abordagens para representar imagens como grafos no desempenho alcançado por modelos GCN e GAT simples, comparando também as diferenças entre estes. Em particular, anali samos os impactos do grau de segmentação da imagem (ou, equivalentemente, do número de vértices do grafo), do conjunto de atributos escolhidos para representar cada superpi xel como vértice e do método para construir as arestas entre os vértices. Concluímos que o desempenho é positivamente impactado ao aumentar o número de vértices, considerar conjuntos ricos de atributos e considerar apenas conexões entre regiões semelhantes no grafo para GCNs e para GATs de um único foco de atenção, enquanto modelos GATs de vários focos podem se beneficiar das informações de regiões vizinhas e da informação de adjacência fornecidas pelos grafos de regiões adjacentes.Graph Neural Networks (GNNs) is an approach that allows applying deep learning tech niques to non-Euclidean data, such as graphs and manifolds. Over the past few years, graph convolutional networks (GCNs) and graph attention networks (GATs), among other specific kinds of convolutional GNNs, have been applied to image classification prob lems. To do so, images should be represented as graphs. This process usually involves over-segmenting images into non-regular regions called superpixels, which are mapped to graph nodes, characterized by features representing the superpixel information, and connected to other nodes. However, there are several different ways of transforming im ages into graphs. This work focuses on applying graph convolutional networks and graph attention networks in image classification problems for images over-segmented into su perpixels. We systematically evaluate the impact of different approaches for representing images as graphs in the performance achieved by the resulting GCN and GAT models, comparing, as well, the differences between them. Namely, we analyze the impacts of the degree of segmentation (number of nodes), the set of features chosen to represent each superpixel as a node, and the method for building the edges between nodes. We concluded that the performance is positively impacted when increasing the number of nodes, con sidering rich sets of features, and considering only connections between similar regions in the resulting graph for GCNs and one-headed GATs, while multi-headed GAT models can take advantage of information from neighboring regions and region adjacency infor mation provided by region adjacency graphs.application/pdfengRedes neuraisGrafosClassificação de imagensGraph neural networksImage classificationSuperpixelsGraph convolutional networksGraph Neural Networks for image classification : comparing approaches for building graphsRedes Neurais de Grafos para classificação de imagens : comparando métodos para construção de grafosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPorto Alegre, BR-RS2024Ciência da Computação: Ênfase em Ciência da Computação: Bachareladograduaçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001197761.pdf.txt001197761.pdf.txtExtracted Texttext/plain147054http://www.lume.ufrgs.br/bitstream/10183/274081/2/001197761.pdf.txteb70c0dc5e53b9c835e95ad0ad7dbe3bMD52ORIGINAL001197761.pdfTexto completo (inglês)application/pdf6233453http://www.lume.ufrgs.br/bitstream/10183/274081/1/001197761.pdf1d0d27826683535c3ebc5296b650f6c7MD5110183/2740812024-03-23 05:01:27.909648oai:www.lume.ufrgs.br:10183/274081Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-03-23T08:01:27Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Graph Neural Networks for image classification : comparing approaches for building graphs
dc.title.alternative.pt.fl_str_mv Redes Neurais de Grafos para classificação de imagens : comparando métodos para construção de grafos
title Graph Neural Networks for image classification : comparing approaches for building graphs
spellingShingle Graph Neural Networks for image classification : comparing approaches for building graphs
Rodrigues, Julia Pelayo
Redes neurais
Grafos
Classificação de imagens
Graph neural networks
Image classification
Superpixels
Graph convolutional networks
title_short Graph Neural Networks for image classification : comparing approaches for building graphs
title_full Graph Neural Networks for image classification : comparing approaches for building graphs
title_fullStr Graph Neural Networks for image classification : comparing approaches for building graphs
title_full_unstemmed Graph Neural Networks for image classification : comparing approaches for building graphs
title_sort Graph Neural Networks for image classification : comparing approaches for building graphs
author Rodrigues, Julia Pelayo
author_facet Rodrigues, Julia Pelayo
author_role author
dc.contributor.author.fl_str_mv Rodrigues, Julia Pelayo
dc.contributor.advisor1.fl_str_mv Carbonera, Joel Luis
contributor_str_mv Carbonera, Joel Luis
dc.subject.por.fl_str_mv Redes neurais
Grafos
Classificação de imagens
topic Redes neurais
Grafos
Classificação de imagens
Graph neural networks
Image classification
Superpixels
Graph convolutional networks
dc.subject.eng.fl_str_mv Graph neural networks
Image classification
Superpixels
Graph convolutional networks
description Redes Neurais de Grafos (GNNs) são uma abordagem que permite aplicar técnicas de aprendizado profundo a dados não-euclidianos, como grafos e variedades. Nos últimos anos, Redes Convolucionais de Grafos (GCNs) e Redes de Atenção a Grafos (GATs), entre outros tipos de GNNs convolucionais, têm sido aplicados a problemas de classi ficação de imagens. Para isso, as imagens devem ser representadas como grafos. Esse processo geralmente envolve a sobre-segmentação de imagens em regiões não-regulares chamadas superpixeis, que são mapeadas para vértices do grafo, descritas por atributos que representam as informações do superpixel e conectadas a outros vértices em vizi nhanças. No entanto, existem diversas maneiras de transformar imagens em grafos. Este trabalho trata da aplicação de GCNs e GATs a problemas de classificação de imagens sobre-segmentadas em superpixels. Avaliamos sistematicamente o impacto de diferentes abordagens para representar imagens como grafos no desempenho alcançado por modelos GCN e GAT simples, comparando também as diferenças entre estes. Em particular, anali samos os impactos do grau de segmentação da imagem (ou, equivalentemente, do número de vértices do grafo), do conjunto de atributos escolhidos para representar cada superpi xel como vértice e do método para construir as arestas entre os vértices. Concluímos que o desempenho é positivamente impactado ao aumentar o número de vértices, considerar conjuntos ricos de atributos e considerar apenas conexões entre regiões semelhantes no grafo para GCNs e para GATs de um único foco de atenção, enquanto modelos GATs de vários focos podem se beneficiar das informações de regiões vizinhas e da informação de adjacência fornecidas pelos grafos de regiões adjacentes.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-03-22T05:07:15Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/274081
dc.identifier.nrb.pt_BR.fl_str_mv 001197761
url http://hdl.handle.net/10183/274081
identifier_str_mv 001197761
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/274081/2/001197761.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/274081/1/001197761.pdf
bitstream.checksum.fl_str_mv eb70c0dc5e53b9c835e95ad0ad7dbe3b
1d0d27826683535c3ebc5296b650f6c7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801224680239005696