Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | spa |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/268325 |
Resumo: | The study presents an analysis of the public data management plans developed in the DMPTool, focusing on the plans developed by Brazilian researchers. The objective is to verify the area of knowledge, research institutions, funding agencies, and the types of data generated. A qualitative-quantitative research approach uses content analysis techniques for data collection, organization, and interpretation. The study presents reflections for future research in this area and highlights the need to increase the training process and support for researchers so that they can understand the dynamics of planning and management of scientific data so that over time it becomes a practice incorporated into scientific work in general. The main results indicate that the area of Health Sciences stands out with 166 registered plans, forming the majority of the total. In terms of institutions, most plans were associated with universities and research institutes in the Southeast region of Brazil. The typological analysis regarding the Origin of the data forms the majority, 42.2% are derivatives, while the typological analysis regarding the Nature results that 67.8% of the data collected and generated are from texts and images. It is concluded that DMPTool is a resource that favors the insertion of the Brazilian scientific ecosystem in the list of best practices in Open Science, especially the management of scientific data. |
id |
UFRGS-2_fede66a8914c894778d75e6910675a91 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/268325 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Stueber, KetlenMonteiro, Elizabete Cristina de Souza de AguiarSilva, Fabiano Couto Corrêa daAlves, Romulo ArantesOliveira, Alexandre Faria de2023-12-12T03:21:46Z20231695-5498http://hdl.handle.net/10183/268325001189638The study presents an analysis of the public data management plans developed in the DMPTool, focusing on the plans developed by Brazilian researchers. The objective is to verify the area of knowledge, research institutions, funding agencies, and the types of data generated. A qualitative-quantitative research approach uses content analysis techniques for data collection, organization, and interpretation. The study presents reflections for future research in this area and highlights the need to increase the training process and support for researchers so that they can understand the dynamics of planning and management of scientific data so that over time it becomes a practice incorporated into scientific work in general. The main results indicate that the area of Health Sciences stands out with 166 registered plans, forming the majority of the total. In terms of institutions, most plans were associated with universities and research institutes in the Southeast region of Brazil. The typological analysis regarding the Origin of the data forms the majority, 42.2% are derivatives, while the typological analysis regarding the Nature results that 67.8% of the data collected and generated are from texts and images. It is concluded that DMPTool is a resource that favors the insertion of the Brazilian scientific ecosystem in the list of best practices in Open Science, especially the management of scientific data.El estudio presenta un análisis de los planes de gestión de datos públicos elaborados en la herramienta DMPTool, centrándose en los planes elaborados por investigadores brasileños. El objetivo es verificar el área de conocimiento, instituciones de investi-gación y agencias de fomento científico, además de los tipos de datos generados. La investigación con enfoque cualitativo y cuantitativo utiliza técnicas de análisis de contenido para recolectar, organizar e interpretar datos. El estudio presenta orientaciones para futuras investigaciones en esta área y destaca la necesidad de incrementar el proceso de formación y apoyar a los investigadores para que puedan comprender la dinámica de planificación y gestión de datos científicos para que, con el tiempo, se convierta en una práctica incorporada a la práctica científica en de una manera tan general. Los principales resultados apuntan que el área de Ciencias de la Salud presenta 166 planes registrados, conformando la mayoría del total. En términos de instituciones, la mayoría de los planes estaban asociados a universidades e institutos de investigación de la región Sudeste de Brasil. El análisis tipológico respecto al Origen de los datos es mayoritario, el 42,2% son derivados, mientras que el análisis tipológico respecto a la Naturaleza arroja que el 67,8% de los datos recogidos y generados son de textos e imágenes. Se concluyó que la herramienta para la elaboración de planes de gestión de datos DMPTool es un recurso que favorece la inclusión del ecosistema científico brasileño en la lista de mejores prácticas en Ciencia Abierta, en particular la gestión de datos científicos.application/pdfspaHipertext.net: Revista académica sobre documentación digital y comunicación interactiva. Barcelona: Universitat Pompeu Fabra. Departamento de Comunicación. No. 27 (nov. 2023), p. 47-56Ciência da informaçãoOpen ScienceScientific dataInformation managementDigital preservationCiencia abiertaDatos científicosGestión de la informaciónPreservación digitalPlanes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicosOverview of Brazilian data management plans in DMPTool: scientific data characterization and diversityAccés Obert a la producció científica a Amèrica Llatina: iniciatives, desafiaments i impactesEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001189638.pdf.txt001189638.pdf.txtExtracted Texttext/plain50683http://www.lume.ufrgs.br/bitstream/10183/268325/2/001189638.pdf.txt8eb467e1be77679bf7a2efec586629caMD52ORIGINAL001189638.pdfTexto completo (espanhol)application/pdf452634http://www.lume.ufrgs.br/bitstream/10183/268325/1/001189638.pdfe4beb13468af100e89cee3b7659e4087MD5110183/2683252024-05-25 06:49:32.182925oai:www.lume.ufrgs.br:10183/268325Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2024-05-25T09:49:32Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
dc.title.alternative.en.fl_str_mv |
Overview of Brazilian data management plans in DMPTool: scientific data characterization and diversity |
dc.title.alternative.ca.fl_str_mv |
Accés Obert a la producció científica a Amèrica Llatina: iniciatives, desafiaments i impactes |
title |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
spellingShingle |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos Stueber, Ketlen Ciência da informação Open Science Scientific data Information management Digital preservation Ciencia abierta Datos científicos Gestión de la información Preservación digital |
title_short |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
title_full |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
title_fullStr |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
title_full_unstemmed |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
title_sort |
Planes de gestión de datos brasileños en DMPTool: caracterización y diversidad de datos científicos |
author |
Stueber, Ketlen |
author_facet |
Stueber, Ketlen Monteiro, Elizabete Cristina de Souza de Aguiar Silva, Fabiano Couto Corrêa da Alves, Romulo Arantes Oliveira, Alexandre Faria de |
author_role |
author |
author2 |
Monteiro, Elizabete Cristina de Souza de Aguiar Silva, Fabiano Couto Corrêa da Alves, Romulo Arantes Oliveira, Alexandre Faria de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Stueber, Ketlen Monteiro, Elizabete Cristina de Souza de Aguiar Silva, Fabiano Couto Corrêa da Alves, Romulo Arantes Oliveira, Alexandre Faria de |
dc.subject.por.fl_str_mv |
Ciência da informação |
topic |
Ciência da informação Open Science Scientific data Information management Digital preservation Ciencia abierta Datos científicos Gestión de la información Preservación digital |
dc.subject.eng.fl_str_mv |
Open Science Scientific data Information management Digital preservation |
dc.subject.spa.fl_str_mv |
Ciencia abierta Datos científicos Gestión de la información Preservación digital |
description |
The study presents an analysis of the public data management plans developed in the DMPTool, focusing on the plans developed by Brazilian researchers. The objective is to verify the area of knowledge, research institutions, funding agencies, and the types of data generated. A qualitative-quantitative research approach uses content analysis techniques for data collection, organization, and interpretation. The study presents reflections for future research in this area and highlights the need to increase the training process and support for researchers so that they can understand the dynamics of planning and management of scientific data so that over time it becomes a practice incorporated into scientific work in general. The main results indicate that the area of Health Sciences stands out with 166 registered plans, forming the majority of the total. In terms of institutions, most plans were associated with universities and research institutes in the Southeast region of Brazil. The typological analysis regarding the Origin of the data forms the majority, 42.2% are derivatives, while the typological analysis regarding the Nature results that 67.8% of the data collected and generated are from texts and images. It is concluded that DMPTool is a resource that favors the insertion of the Brazilian scientific ecosystem in the list of best practices in Open Science, especially the management of scientific data. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-12-12T03:21:46Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/268325 |
dc.identifier.issn.pt_BR.fl_str_mv |
1695-5498 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001189638 |
identifier_str_mv |
1695-5498 001189638 |
url |
http://hdl.handle.net/10183/268325 |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.pt_BR.fl_str_mv |
Hipertext.net: Revista académica sobre documentación digital y comunicación interactiva. Barcelona: Universitat Pompeu Fabra. Departamento de Comunicación. No. 27 (nov. 2023), p. 47-56 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/268325/2/001189638.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/268325/1/001189638.pdf |
bitstream.checksum.fl_str_mv |
8eb467e1be77679bf7a2efec586629ca e4beb13468af100e89cee3b7659e4087 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447847522271232 |