J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX

Detalhes bibliográficos
Autor(a) principal: Whitten, Devin
Data de Publicação: 2019
Outros Autores: Chies-Santos, Ana Leonor, Vázquez Ramió, Héctor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/214386
Resumo: Context. We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. Aims. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, Teff, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. Methods. The Stellar Photometric Index Network Explorer, SPHINX, was developed to produce estimates of Teff and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology was applied to J-PLUS photometry of the globular cluster M15. Results. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, σ(Teff) = 91 K, over the temperature range 4500 < Teff (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < Teff (K) < 6200, 85 ± 3% of stars known to have [Fe/H] < −2.0 are recovered by SPHINX. A mean metallicity of [Fe/H] = − 2.32 ± 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. Conclusions. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.
id UFRGS-2_ffdb30049f75b91356177bf8f3f1924a
oai_identifier_str oai:www.lume.ufrgs.br:10183/214386
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Whitten, DevinChies-Santos, Ana LeonorVázquez Ramió, Héctor2020-10-23T04:10:04Z20190004-6361http://hdl.handle.net/10183/214386001115786Context. We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. Aims. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, Teff, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. Methods. The Stellar Photometric Index Network Explorer, SPHINX, was developed to produce estimates of Teff and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology was applied to J-PLUS photometry of the globular cluster M15. Results. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, σ(Teff) = 91 K, over the temperature range 4500 < Teff (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < Teff (K) < 6200, 85 ± 3% of stars known to have [Fe/H] < −2.0 are recovered by SPHINX. A mean metallicity of [Fe/H] = − 2.32 ± 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. Conclusions. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.application/pdfengAstronomy and astrophysics. Les Ulis. Vol. 622 (Feb. 2019), A182, 18 p.Fotometria astronômicaMetalicidadeStars: chemically peculiarStars: fundamental parametersStars: abundancesTechniques: photometricMethods: data analysisJ-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINXEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001115786.pdf.txt001115786.pdf.txtExtracted Texttext/plain94863http://www.lume.ufrgs.br/bitstream/10183/214386/2/001115786.pdf.txt1f2801331d7633094849063ad834c1c5MD52ORIGINAL001115786.pdfTexto completo (inglês)application/pdf6075896http://www.lume.ufrgs.br/bitstream/10183/214386/1/001115786.pdf7d11c36718772d6f3686f6ae9b5b87bbMD5110183/2143862020-10-24 04:12:35.181188oai:www.lume.ufrgs.br:10183/214386Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2020-10-24T07:12:35Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
title J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
spellingShingle J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
Whitten, Devin
Fotometria astronômica
Metalicidade
Stars: chemically peculiar
Stars: fundamental parameters
Stars: abundances
Techniques: photometric
Methods: data analysis
title_short J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
title_full J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
title_fullStr J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
title_full_unstemmed J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
title_sort J-PLUS : identification of low-metallicity stars with artificial neural networks using SPHINX
author Whitten, Devin
author_facet Whitten, Devin
Chies-Santos, Ana Leonor
Vázquez Ramió, Héctor
author_role author
author2 Chies-Santos, Ana Leonor
Vázquez Ramió, Héctor
author2_role author
author
dc.contributor.author.fl_str_mv Whitten, Devin
Chies-Santos, Ana Leonor
Vázquez Ramió, Héctor
dc.subject.por.fl_str_mv Fotometria astronômica
Metalicidade
topic Fotometria astronômica
Metalicidade
Stars: chemically peculiar
Stars: fundamental parameters
Stars: abundances
Techniques: photometric
Methods: data analysis
dc.subject.eng.fl_str_mv Stars: chemically peculiar
Stars: fundamental parameters
Stars: abundances
Techniques: photometric
Methods: data analysis
description Context. We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. Aims. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, Teff, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. Methods. The Stellar Photometric Index Network Explorer, SPHINX, was developed to produce estimates of Teff and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology was applied to J-PLUS photometry of the globular cluster M15. Results. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, σ(Teff) = 91 K, over the temperature range 4500 < Teff (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < Teff (K) < 6200, 85 ± 3% of stars known to have [Fe/H] < −2.0 are recovered by SPHINX. A mean metallicity of [Fe/H] = − 2.32 ± 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. Conclusions. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-10-23T04:10:04Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/214386
dc.identifier.issn.pt_BR.fl_str_mv 0004-6361
dc.identifier.nrb.pt_BR.fl_str_mv 001115786
identifier_str_mv 0004-6361
001115786
url http://hdl.handle.net/10183/214386
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Astronomy and astrophysics. Les Ulis. Vol. 622 (Feb. 2019), A182, 18 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/214386/2/001115786.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/214386/1/001115786.pdf
bitstream.checksum.fl_str_mv 1f2801331d7633094849063ad834c1c5
7d11c36718772d6f3686f6ae9b5b87bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447722911596544