Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies

Detalhes bibliográficos
Autor(a) principal: Amadeu Gualdani, Fabrício
Data de Publicação: 2024
Outros Autores: Castro Botega , Leonardo, Júlio de Oliveira Miranda , Nelson, Ferreira, Allan, Porte Peres , Reinaldo
Tipo de documento: Artigo
Idioma: por
Título da fonte: Em Questão (Online)
Texto Completo: https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988
Resumo: The International Statistical Classification of Diseases and Health Problems and the Systematized Nomenclature of Medicine are terminologies that aim for data transparency. Terminologies have differences in their compositions, and a mapping between these terms is necessary in order to obtain  meaning, seeking to improve the daily life of health professionals with their patients through a model that structures the information in a comprehensive syntactic and semantic way. The goal of this research is to develop a model for semantic mapping between these health terminologies. This is exploratory research, a case study carried out at the Hospital das Clínicas da Faculdade de Medicina de Marília, which provided the International Statistical Classification of Diseases and Health-Related Problems codes recorded in the medical records for the mapping, aiming to migrate the stored data that were in a relational database to an international structure and data sharing network. The results showed that there are four types of situations during the mapping process: semantic accuracy between terminologies, use of expressions that make the health condition generic, terms that are not exactly equivalent but are semantically close, and a variety of terms to represent a single health condition. It is concluded that it is possible to develop a replicable model that preserves the semantic layer of terms between the International Statistical Classification of Diseases and Health Problems and the Systematized Nomenclature of Medicine.The results showed that there are four types of situation when mapping: semantic accuracy between terminologies, use of expressions that make the health condition generic, terms that are not exactly equivalent but have semantic approximation, as well as a variety of terms to represent a single health condition. Following this approach, it is concluded that it is possible to develop a replicable model that preserves the semantic layer of terms between the International Statistical Classification of Diseases and Related Health Problems and the Systematized Nomenclature of Medicine.
id UFRGS-8_800abd78cf4b704c49b50495756fe9b5
oai_identifier_str oai:seer.ufrgs.br:article/134988
network_acronym_str UFRGS-8
network_name_str Em Questão (Online)
repository_id_str
spelling Semantic Mapping Model between ICD-10 and SNOMED-CT Health TerminologiesModelo de mapeamento semântico entre as terminologias de saúde CID-10 e SNOMED-CTelectronic patient recordhealth classifications health terminologiessemantic mappingprontuário eletrônico do pacienteclassificações em saúdeterminologias em saúdemapeamento semânticoThe International Statistical Classification of Diseases and Health Problems and the Systematized Nomenclature of Medicine are terminologies that aim for data transparency. Terminologies have differences in their compositions, and a mapping between these terms is necessary in order to obtain  meaning, seeking to improve the daily life of health professionals with their patients through a model that structures the information in a comprehensive syntactic and semantic way. The goal of this research is to develop a model for semantic mapping between these health terminologies. This is exploratory research, a case study carried out at the Hospital das Clínicas da Faculdade de Medicina de Marília, which provided the International Statistical Classification of Diseases and Health-Related Problems codes recorded in the medical records for the mapping, aiming to migrate the stored data that were in a relational database to an international structure and data sharing network. The results showed that there are four types of situations during the mapping process: semantic accuracy between terminologies, use of expressions that make the health condition generic, terms that are not exactly equivalent but are semantically close, and a variety of terms to represent a single health condition. It is concluded that it is possible to develop a replicable model that preserves the semantic layer of terms between the International Statistical Classification of Diseases and Health Problems and the Systematized Nomenclature of Medicine.The results showed that there are four types of situation when mapping: semantic accuracy between terminologies, use of expressions that make the health condition generic, terms that are not exactly equivalent but have semantic approximation, as well as a variety of terms to represent a single health condition. Following this approach, it is concluded that it is possible to develop a replicable model that preserves the semantic layer of terms between the International Statistical Classification of Diseases and Related Health Problems and the Systematized Nomenclature of Medicine.A Classificação Estatística Internacional de Doenças e Problemas Relacionados à Saúde e a Nomenclatura Sistematizada de Medicina são terminologias que visam a transparência dos dados. Terminologias possuem diferenças em suas composições, sendo necessário um mapeamento entre esses termos para que um sentido possa ser obtido, aprimorando o cotidiano de profissionais da saúde com os seus pacientes por um modelo que estruture as informações de forma compreensiva de maneira sintática e semântica. O objetivo desta pesquisa é desenvolver um modelo para o mapeamento semântico entre estas terminologias de saúde. Trata-se de uma pesquisa exploratória, um estudo de caso realizado no Hospital das Clínicas da Faculdade de Medicina de Marília, que forneceu os códigos da Classificação Estatística Internacional de Doenças e Problemas Relacionados à Saúde registrados nos prontuários para a realização do mapeamento, visando migrar os dados armazenados que se encontravam em um banco de dados relacional para uma rede internacional de estrutura e compartilhamento de dados. Os resultados evidenciaram que há quatro tipos de situações durante a realização do mapeamento: exatidão semântica entre as terminologias, uso de expressões que tornam a condição de saúde genérica, termos que não são exatamente equivalentes, no entanto possuem aproximação semântica, assim como uma variedade de termos para representar uma única condição de saúde. Obedecendo este direcionamento, conclui-se que é possível desenvolver um modelo replicável que preserve a camada semântica dos termos entre a Classificação Estatística Internacional de Doenças e Problemas Relacionados à Saúde e a Nomenclatura Sistematizada de Medicina.Universidade Federal do Rio Grande do Sul, Faculdade de Biblioteconomia e Comunicação, Programa de Pós-Graduação em Ciência da Informação (Porto Alegre/RS)2024-03-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por Paresapplication/pdfapplication/pdfapplication/pdfhttps://seer.ufrgs.br/index.php/EmQuestao/article/view/13498810.1590/1808-5245.30.134988Em Questão; Vol. 30 (2024); 134988Em Questão; Vol. 30 (2024); 134988Em Questão; v. 30 (2024); 1349881808-52451807-8893reponame:Em Questão (Online)instname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSporhttps://seer.ufrgs.br/index.php/EmQuestao/article/view/134988/91298https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988/91295https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988/91296Copyright (c) 2024 Fabrício Amadeu Gualdani, Leonardo Castro Botega , Nelson Júlio de Oliveira Miranda , Allan Ferreira, Reinaldo Porte Peres https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessAmadeu Gualdani, FabrícioCastro Botega , LeonardoJúlio de Oliveira Miranda , NelsonFerreira, AllanPorte Peres , Reinaldo2024-05-20T14:52:18Zoai:seer.ufrgs.br:article/134988Revistahttps://seer.ufrgs.br/emquestao/PUBhttps://seer.ufrgs.br/EmQuestao/oaiemquestao@ufrgs.br||emquestao@ufrgs.br1808-52451807-8893opendoar:2024-05-20T14:52:18Em Questão (Online) - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.none.fl_str_mv Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
Modelo de mapeamento semântico entre as terminologias de saúde CID-10 e SNOMED-CT
title Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
spellingShingle Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
Amadeu Gualdani, Fabrício
electronic patient record
health classifications
health terminologies
semantic mapping
prontuário eletrônico do paciente
classificações em saúde
terminologias em saúde
mapeamento semântico
title_short Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
title_full Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
title_fullStr Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
title_full_unstemmed Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
title_sort Semantic Mapping Model between ICD-10 and SNOMED-CT Health Terminologies
author Amadeu Gualdani, Fabrício
author_facet Amadeu Gualdani, Fabrício
Castro Botega , Leonardo
Júlio de Oliveira Miranda , Nelson
Ferreira, Allan
Porte Peres , Reinaldo
author_role author
author2 Castro Botega , Leonardo
Júlio de Oliveira Miranda , Nelson
Ferreira, Allan
Porte Peres , Reinaldo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Amadeu Gualdani, Fabrício
Castro Botega , Leonardo
Júlio de Oliveira Miranda , Nelson
Ferreira, Allan
Porte Peres , Reinaldo
dc.subject.por.fl_str_mv electronic patient record
health classifications
health terminologies
semantic mapping
prontuário eletrônico do paciente
classificações em saúde
terminologias em saúde
mapeamento semântico
topic electronic patient record
health classifications
health terminologies
semantic mapping
prontuário eletrônico do paciente
classificações em saúde
terminologias em saúde
mapeamento semântico
description The International Statistical Classification of Diseases and Health Problems and the Systematized Nomenclature of Medicine are terminologies that aim for data transparency. Terminologies have differences in their compositions, and a mapping between these terms is necessary in order to obtain  meaning, seeking to improve the daily life of health professionals with their patients through a model that structures the information in a comprehensive syntactic and semantic way. The goal of this research is to develop a model for semantic mapping between these health terminologies. This is exploratory research, a case study carried out at the Hospital das Clínicas da Faculdade de Medicina de Marília, which provided the International Statistical Classification of Diseases and Health-Related Problems codes recorded in the medical records for the mapping, aiming to migrate the stored data that were in a relational database to an international structure and data sharing network. The results showed that there are four types of situations during the mapping process: semantic accuracy between terminologies, use of expressions that make the health condition generic, terms that are not exactly equivalent but are semantically close, and a variety of terms to represent a single health condition. It is concluded that it is possible to develop a replicable model that preserves the semantic layer of terms between the International Statistical Classification of Diseases and Health Problems and the Systematized Nomenclature of Medicine.The results showed that there are four types of situation when mapping: semantic accuracy between terminologies, use of expressions that make the health condition generic, terms that are not exactly equivalent but have semantic approximation, as well as a variety of terms to represent a single health condition. Following this approach, it is concluded that it is possible to develop a replicable model that preserves the semantic layer of terms between the International Statistical Classification of Diseases and Related Health Problems and the Systematized Nomenclature of Medicine.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-07
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado por Pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988
10.1590/1808-5245.30.134988
url https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988
identifier_str_mv 10.1590/1808-5245.30.134988
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988/91298
https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988/91295
https://seer.ufrgs.br/index.php/EmQuestao/article/view/134988/91296
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Sul, Faculdade de Biblioteconomia e Comunicação, Programa de Pós-Graduação em Ciência da Informação (Porto Alegre/RS)
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Sul, Faculdade de Biblioteconomia e Comunicação, Programa de Pós-Graduação em Ciência da Informação (Porto Alegre/RS)
dc.source.none.fl_str_mv Em Questão; Vol. 30 (2024); 134988
Em Questão; Vol. 30 (2024); 134988
Em Questão; v. 30 (2024); 134988
1808-5245
1807-8893
reponame:Em Questão (Online)
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Em Questão (Online)
collection Em Questão (Online)
repository.name.fl_str_mv Em Questão (Online) - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv emquestao@ufrgs.br||emquestao@ufrgs.br
_version_ 1799766161915641856