Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping

Detalhes bibliográficos
Autor(a) principal: Santos, Alex Mota dos
Data de Publicação: 2022
Outros Autores: Carmo, Nadyelle Curcino do, Nunes, Fabrizia Gioppo, Aguiar, Larissa Andrade de, Silva, Carlos Fabricio Assunção da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
DOI: 10.11137/1982-3908_2022_45_47481
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/47481
Resumo: In the classification of images for land cover and land use mapping, several methods can be applied, however, they can present different results in relation to field truth. Therefore, the objective of this work was to test techniques for classifying high spatial digital images obtained from the Google Earth Pro® platform. The images refer to a section of the Federal University of Goias, campus Samambaia Goiania - GO, Brazil. Classification tests were performed on the images obtained, using two classifiers per region and two classifiers per pixel, both available free of charge, in the Spring software of the National Institute for Space Research (INPE / Brazil). For the analysis of the quality of the classifications, the results were compared to a survey by direct method, in this case the topographic one, seeking to identify which classifier came closest to the field truth. The classification that presented the best performance and class separability was the Bhattacharya, with Global Accuracy of 0.85. Bhattacharya was also the classifier that came closest in terms of measured areas, by the topographic survey, with the areas of the “zinc roofing” use class, analyzed and calculated.
id UFRJ-21_081201acc69176f122852fbafe39d548
oai_identifier_str oai:www.revistas.ufrj.br:article/47481
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
spelling Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mappingremote Sensing; direct method; indirect methodsIn the classification of images for land cover and land use mapping, several methods can be applied, however, they can present different results in relation to field truth. Therefore, the objective of this work was to test techniques for classifying high spatial digital images obtained from the Google Earth Pro® platform. The images refer to a section of the Federal University of Goias, campus Samambaia Goiania - GO, Brazil. Classification tests were performed on the images obtained, using two classifiers per region and two classifiers per pixel, both available free of charge, in the Spring software of the National Institute for Space Research (INPE / Brazil). For the analysis of the quality of the classifications, the results were compared to a survey by direct method, in this case the topographic one, seeking to identify which classifier came closest to the field truth. The classification that presented the best performance and class separability was the Bhattacharya, with Global Accuracy of 0.85. Bhattacharya was also the classifier that came closest in terms of measured areas, by the topographic survey, with the areas of the “zinc roofing” use class, analyzed and calculated.Universidade Federal do Rio de JaneiroSantos, Alex Mota dosCarmo, Nadyelle Curcino doNunes, Fabrizia GioppoAguiar, Larissa Andrade deSilva, Carlos Fabricio Assunção da2022-08-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/4748110.11137/1982-3908_2022_45_47481Anuário do Instituto de Geociências; Vol 45 (2022)Anuário do Instituto de Geociências; Vol 45 (2022)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/47481/pdf/*ref*/Abdelaty, E.F.S. 2016, ‘Land use change detection and prediction using high-spatial resolution Google earth imagery and GIS techniques: a study on ElBeheira governorate’, Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), vol. 9688, no.1, pp. 968803-1. DOI:10.1117/12.223989./*ref*/Almeida, A.S.D., Werneck, G.L. & Resendes, A.P.D.C. 2014, ‘Classificação orientada a objeto de imagens de sensoriamento remoto em estudos epidemiológicos sobre leishmaniose visceral em área urbana’, Cadernos de Saúde Pública, vol. 30, no.1, pp. 1639-53, DOI:10.1590/0102-311X00059414./*ref*/Amaral, M.V.F., Souza, A.L., Soares, V.P., Soares, C.P., Leite, H.G., Martins, S.V., Fernandes, E.I. Filho & Lana, J.M. 2009, ‘Avaliação e comparação de métodos de classificação de imagens de satélites para o mapeamento de estádios de sucessão florestal’, Revista Árvore, vol. 33, no. 3, pp. 575-82, DOI:10.1590/S0100-67622009000300019./*ref*/Duhl, T.R., Guenther, A. & Helmig, D. 2012, ‘Estimating urban vegetation cover fraction using Google Earth® images’, Journal of Land Use Science, vol. 7, no. 3, pp. 311-29, DOI:10.1080/1747423X.2011.587207./*ref*/Durán, G., Pereira, W. Filho & Kuplich, T. M. 2018, ‘Identificação espectral de materiais urbanos com a técnica mapeador de ângulo espectral (SAM) e o sensor de alta resolução espacial Geoeye-1’, Boletim Geográfico do Rio Grande do Sul, vol. 31, n.1, pp. 9-34./*ref*/Garcia, A.S., Vilela, V.M.F.N., Rizzoa, R., Westb, P., Gerberb, J.S., Engstromb, P.M. & Ballester, M.V.R. 2019, ‘Assessing land use/cover dynamics and exploring drivers in the Amazon's arc of deforestation through a hierarchical, multi-scale and multi-temporal classification approach’, Remote Sensing Applications: Society and Environment, vol. 15, no. 1, pp. 1-14, DOI:10.1016/j.rsase.2019.05.002./*ref*/Ghaffarian, S. & Ghaffarian, S. 2014, ‘Automatic building detection based on supervised classification using high resolution Google Earth images’, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-3. ISPRS Technical Commission III Symposium, Zurich, Switzerland, 2014, DOI:10.5194/isprsarchives-XL-3-101-2014./*ref*/Hu, Q., Wu, W., Xia, T., Yu, O., Yang, P., Li, Z. & Song, Q. 2013, ‘Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping’, Remote Sensing, vol. 5, no. 11, pp. 6026-42, DOI:10.3390/rs5116026./*ref*/Huang, M., Chen, N., Du, W., Chen, Z. & Gong, J. 2018, ‘DMBLC: an indirect urban impervious Surface Area Extraction Approach by Detecting and Masking Background Land Cover on Google Earth Image’, Remote Sensing, vol. 10, no. 5, pp. 1-17, DOI:10.3390/rs10050766./*ref*/IBGE, Instituto Brasileiro de Geografia e Estatística 2013. Manual Técnico de Uso da Terra, viewed 20 September 2021, <https://biblioteca.ibge.gov.br/visualizacao/livros/liv81615.pdf >. INPE, Instituto Nacional de Pesquisas Espaciais 2001, SPRING: Tutorial de Geoprocessamento, viewed 20 September 2021, <http://www.dpi.inpe.br/spring/portugues/tutorial/index.html>./*ref*/Irons, J.R. & Petersen, G.W. 1981, ‘Texture transforms of remote sensing data’, Remote Sensing of Environment, vol. 11, no. 1, pp. 359-70. DOI:10.1016/0034-4257(81)90033-X./*ref*/Jacobson, A., Dhanota, J., Godfrey, J., Jacobson, H., Rossman, Z., Stanish, A., Walker, H. & Riggio, J. 2015, ‘A novel approach to mapping land conversion using Google Earth with an application to East Africa’, Environmental Modelling & Software, vol. 72, no. 1, pp. 1-9, DOI:10.1016/j.envsoft.2015.06.011./*ref*/Kussul, N., Lavreniuk, M., Skakun, S. & Shelestov, A. 2017, ‘Deep learning classification of land cover and crop types using remote sensing data’, IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 778-82. DOI:10.1109/LGRS.2017.2681128./*ref*/Landis, J. & Koch, G.G. 2017, ‘The measurements of agreement for categorical data’, Biometrics, vol. 33, no. 3, pp. 159-79, DOI:10.2307/2529310./*ref*/Lee, C. & Choi, E. 2000, ‘Bayes error evaluation of the Gaussian ML classifier’. IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1471-75, DOI:10.1109/36.843045./*ref*/Li, M., Zang, S., Zhang, B., Li, S. & Wu, C. 2017, ‘A review of remote sensing image classification techniques: the role of spatio-contextual information’, European Journal of Remote Sensing, vol. 47, no. 1, pp. 389-411, DOI:10.5721/EuJRS20144723./*ref*/Llano, X.C. 2019, ‘AcATaMa - QGIS plugin for Accuracy Assessment of Thematic Maps’, version 3.16.9, AcATaMa, <https://plugins.qgis.org/plugins/AcATaMa/>./*ref*/Lu, D., Batistella, M., Li, G., Moran, E., Hetrick, S., Freitas, C.C., Dutra, L.V. & Sant’Anna, S.J.S. 2012, ‘Land use/cover classification in the Brazilian Amazon using satellite images’, Pesquisa Agropecuária Brasileira., vol. 47, no. 9, pp. 1185-1208, DOI:10.1590/S0100-204X2012000900004./*ref*/Lu, D., Hetrick, S. & Moran, E.F. 2010, ‘Land cover classification in a complex urban-rural landscape with quickbird imagery’, Photogrammetric Engineering & Remote Sensing, vol. 76, no. 10, pp. 1159-68, DOI:10.14358/PERS.76.10.1159./*ref*/Malarvizh, K., Kumar, S.V. & Porchelvan, P. 2016, ‘Use of high resolution Google Earth satellite imagery in landuse map preparation for urban related applications’, Procedia Technology, vol. 24, no.1, pp. 1835-42, DOI:10.1016/j.protcy.2016.05.231./*ref*/Mello, A.Y.I., Alves, D.S., Linhares, C.A. & Lima, F.B. 2012, ‘Avaliação de técnicas de classificação digital de imagens Landsat em diferentes padrões de cobertura da terra em Rondônia’, Revista Árvore, vol. 36, no. 3, pp. 537-47, DOI:10.1590/S0100-67622012000300016/*ref*/Oliveira, M.Z., Veronez, M.R., Turani, M. & Reinhardt, A.O. 2009, ‘Imagens do Google Earth para fins de planejamento ambiental: uma análise de exatidão para o município de São Leopoldo/RS’, Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 2009, pp. 1835-42, <http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.10.17.37/doc/1835-1842.pdf>/*ref*/Oyekola, M.A. & Adewuyi, G.K. 2018, ‘Unsupervised Classification in Land Cover Types Using Remote Sensing and GIS Techniques’, International Journal of Science and Engineering Investigations, vol. 7, no. 72, pp. 11-18, <https://www.researchgate.net/publication/326623967_Unsupervised_Classification_in_Land_Cover_Types_Using_Remote_Sensing_and_GIS_Techniques>./*ref*/Queiroz, T.B., Sousa, R.D.S., Baldin, T., Batista, F.D.J., Marchesan, J., Pedrali, L.D. & Pereira, R.S. 2017, ‘Avaliação do desempenho da classificação do uso e cobertura da terra a partir de imagens Landsat 8 e Rapideye na região central do Rio Grande do Sul’, Geociências, vol. 36, no. 3, pp. 569-78./*ref*/Samaniego, L., Bárdossy, A. & Schulz, K. 2008, ‘Supervised classification of remotely sensed imagery using a modified k-NN technique’, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 7, pp. 2112-25, DOI:10.1109/TGRS.2008.916629./*ref*/Santos, L.A.C. & Lima, P.E.M. 2018, ‘Comparação entre diferentes algoritmos de classificação supervisionada no mapeamento temático de uma bacia hidrográfica’, Revista TreeDimensional, ProFloresta, vol. 3, no. 5, pp. 27-41, <http://www.treedimensional.org/revista/2018a/comparacao.pdf>./*ref*/Schneider, A. 2012, ‘Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approuch’, Remote Sensing of Environment, vol. 124, n. 1, pp. 689-704, DOI:10.1016/j.rse.2012.06.006./*ref*/Strahler, A.H. 1980, ‘The use of prior probabilities in maximum likelihood classification of remotely sensed data’, Remote Sensing of Environment, vol. 10, no. 2, pp. 135-63, DOI:10.1016/0034-4257(80)90011-5./*ref*/Tommaselli, A.M.G., Silva, J.F.C., Hasegawa, J.K., Galo, M. & Dal Poz, A.P. 1999, ‘Fotogrametria: aplicações a curta distância’ in M. Menguete Jr. & N. Alves (orgs), FCT 40 anos, Perfil Científico Educacional, UNESP/FCT, São Paulo, pp. 147-59, <https://www.researchgate.net/publication/267035028_FOTOGRAMETRIA_aplicacoes_a_curta_distancia>./*ref*/Wibowo, A., Salleh, K.O., Frans, F.T.R.S. & Semedi, J.M. 2016, ‘Spatial temporal land use change detection using Google Earth data’, In IOP Conference Series: Earth and Environmental Science, vol. 47, no. 1, 012031. DOI:10.1088/1755-1315/47/1/012031/*ref*/Zanetti, J., Braga, F.L.S & Duarte, D.C.O. 2017, ‘Comparação dos métodos de classificação supervisionada de imagem máxima verossimilhança, distância euclidiana, paralelepípedo e redes neurais em imagens Vant, utilizando o método de Exatidão Global, índice Kappa e o Tau’, Anais do IV Simpósio Brasileiro de Geomática – SBG, Presidente Prudente, 2017, pp. 244-50./*ref*/Zhenkui, M.A. & Redmond, R.L. 1995, ‘Tau coefficients for accuracy assessment of classification of remote sensing data’, Photogrammetric Engineering and Remote Sensing, vol. 61, no. 4, pp. 63-152, <https://www.asprs.org/wp-content/uploads/pers/1995journal/apr/1995_apr_435-439.pdf>Copyright (c) 2022 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2022-12-28T20:46:28Zoai:www.revistas.ufrj.br:article/47481Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2022-12-28T20:46:28Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
title Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
spellingShingle Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
Santos, Alex Mota dos
remote Sensing; direct method; indirect methods
Santos, Alex Mota dos
remote Sensing; direct method; indirect methods
title_short Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
title_full Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
title_fullStr Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
title_full_unstemmed Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
title_sort Digital Image Classification: a Comparison of Classic Methods for Land Cover and Land Use Mapping
author Santos, Alex Mota dos
author_facet Santos, Alex Mota dos
Santos, Alex Mota dos
Carmo, Nadyelle Curcino do
Nunes, Fabrizia Gioppo
Aguiar, Larissa Andrade de
Silva, Carlos Fabricio Assunção da
Carmo, Nadyelle Curcino do
Nunes, Fabrizia Gioppo
Aguiar, Larissa Andrade de
Silva, Carlos Fabricio Assunção da
author_role author
author2 Carmo, Nadyelle Curcino do
Nunes, Fabrizia Gioppo
Aguiar, Larissa Andrade de
Silva, Carlos Fabricio Assunção da
author2_role author
author
author
author
dc.contributor.none.fl_str_mv
dc.contributor.author.fl_str_mv Santos, Alex Mota dos
Carmo, Nadyelle Curcino do
Nunes, Fabrizia Gioppo
Aguiar, Larissa Andrade de
Silva, Carlos Fabricio Assunção da
dc.subject.por.fl_str_mv remote Sensing; direct method; indirect methods
topic remote Sensing; direct method; indirect methods
description In the classification of images for land cover and land use mapping, several methods can be applied, however, they can present different results in relation to field truth. Therefore, the objective of this work was to test techniques for classifying high spatial digital images obtained from the Google Earth Pro® platform. The images refer to a section of the Federal University of Goias, campus Samambaia Goiania - GO, Brazil. Classification tests were performed on the images obtained, using two classifiers per region and two classifiers per pixel, both available free of charge, in the Spring software of the National Institute for Space Research (INPE / Brazil). For the analysis of the quality of the classifications, the results were compared to a survey by direct method, in this case the topographic one, seeking to identify which classifier came closest to the field truth. The classification that presented the best performance and class separability was the Bhattacharya, with Global Accuracy of 0.85. Bhattacharya was also the classifier that came closest in terms of measured areas, by the topographic survey, with the areas of the “zinc roofing” use class, analyzed and calculated.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-12
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/47481
10.11137/1982-3908_2022_45_47481
url https://revistas.ufrj.br/index.php/aigeo/article/view/47481
identifier_str_mv 10.11137/1982-3908_2022_45_47481
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/47481/pdf
/*ref*/Abdelaty, E.F.S. 2016, ‘Land use change detection and prediction using high-spatial resolution Google earth imagery and GIS techniques: a study on ElBeheira governorate’, Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), vol. 9688, no.1, pp. 968803-1. DOI:10.1117/12.223989.
/*ref*/Almeida, A.S.D., Werneck, G.L. & Resendes, A.P.D.C. 2014, ‘Classificação orientada a objeto de imagens de sensoriamento remoto em estudos epidemiológicos sobre leishmaniose visceral em área urbana’, Cadernos de Saúde Pública, vol. 30, no.1, pp. 1639-53, DOI:10.1590/0102-311X00059414.
/*ref*/Amaral, M.V.F., Souza, A.L., Soares, V.P., Soares, C.P., Leite, H.G., Martins, S.V., Fernandes, E.I. Filho & Lana, J.M. 2009, ‘Avaliação e comparação de métodos de classificação de imagens de satélites para o mapeamento de estádios de sucessão florestal’, Revista Árvore, vol. 33, no. 3, pp. 575-82, DOI:10.1590/S0100-67622009000300019.
/*ref*/Duhl, T.R., Guenther, A. & Helmig, D. 2012, ‘Estimating urban vegetation cover fraction using Google Earth® images’, Journal of Land Use Science, vol. 7, no. 3, pp. 311-29, DOI:10.1080/1747423X.2011.587207.
/*ref*/Durán, G., Pereira, W. Filho & Kuplich, T. M. 2018, ‘Identificação espectral de materiais urbanos com a técnica mapeador de ângulo espectral (SAM) e o sensor de alta resolução espacial Geoeye-1’, Boletim Geográfico do Rio Grande do Sul, vol. 31, n.1, pp. 9-34.
/*ref*/Garcia, A.S., Vilela, V.M.F.N., Rizzoa, R., Westb, P., Gerberb, J.S., Engstromb, P.M. & Ballester, M.V.R. 2019, ‘Assessing land use/cover dynamics and exploring drivers in the Amazon's arc of deforestation through a hierarchical, multi-scale and multi-temporal classification approach’, Remote Sensing Applications: Society and Environment, vol. 15, no. 1, pp. 1-14, DOI:10.1016/j.rsase.2019.05.002.
/*ref*/Ghaffarian, S. & Ghaffarian, S. 2014, ‘Automatic building detection based on supervised classification using high resolution Google Earth images’, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-3. ISPRS Technical Commission III Symposium, Zurich, Switzerland, 2014, DOI:10.5194/isprsarchives-XL-3-101-2014.
/*ref*/Hu, Q., Wu, W., Xia, T., Yu, O., Yang, P., Li, Z. & Song, Q. 2013, ‘Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping’, Remote Sensing, vol. 5, no. 11, pp. 6026-42, DOI:10.3390/rs5116026.
/*ref*/Huang, M., Chen, N., Du, W., Chen, Z. & Gong, J. 2018, ‘DMBLC: an indirect urban impervious Surface Area Extraction Approach by Detecting and Masking Background Land Cover on Google Earth Image’, Remote Sensing, vol. 10, no. 5, pp. 1-17, DOI:10.3390/rs10050766.
/*ref*/IBGE, Instituto Brasileiro de Geografia e Estatística 2013. Manual Técnico de Uso da Terra, viewed 20 September 2021, <https://biblioteca.ibge.gov.br/visualizacao/livros/liv81615.pdf >. INPE, Instituto Nacional de Pesquisas Espaciais 2001, SPRING: Tutorial de Geoprocessamento, viewed 20 September 2021, <http://www.dpi.inpe.br/spring/portugues/tutorial/index.html>.
/*ref*/Irons, J.R. & Petersen, G.W. 1981, ‘Texture transforms of remote sensing data’, Remote Sensing of Environment, vol. 11, no. 1, pp. 359-70. DOI:10.1016/0034-4257(81)90033-X.
/*ref*/Jacobson, A., Dhanota, J., Godfrey, J., Jacobson, H., Rossman, Z., Stanish, A., Walker, H. & Riggio, J. 2015, ‘A novel approach to mapping land conversion using Google Earth with an application to East Africa’, Environmental Modelling & Software, vol. 72, no. 1, pp. 1-9, DOI:10.1016/j.envsoft.2015.06.011.
/*ref*/Kussul, N., Lavreniuk, M., Skakun, S. & Shelestov, A. 2017, ‘Deep learning classification of land cover and crop types using remote sensing data’, IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 778-82. DOI:10.1109/LGRS.2017.2681128.
/*ref*/Landis, J. & Koch, G.G. 2017, ‘The measurements of agreement for categorical data’, Biometrics, vol. 33, no. 3, pp. 159-79, DOI:10.2307/2529310.
/*ref*/Lee, C. & Choi, E. 2000, ‘Bayes error evaluation of the Gaussian ML classifier’. IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1471-75, DOI:10.1109/36.843045.
/*ref*/Li, M., Zang, S., Zhang, B., Li, S. & Wu, C. 2017, ‘A review of remote sensing image classification techniques: the role of spatio-contextual information’, European Journal of Remote Sensing, vol. 47, no. 1, pp. 389-411, DOI:10.5721/EuJRS20144723.
/*ref*/Llano, X.C. 2019, ‘AcATaMa - QGIS plugin for Accuracy Assessment of Thematic Maps’, version 3.16.9, AcATaMa, <https://plugins.qgis.org/plugins/AcATaMa/>.
/*ref*/Lu, D., Batistella, M., Li, G., Moran, E., Hetrick, S., Freitas, C.C., Dutra, L.V. & Sant’Anna, S.J.S. 2012, ‘Land use/cover classification in the Brazilian Amazon using satellite images’, Pesquisa Agropecuária Brasileira., vol. 47, no. 9, pp. 1185-1208, DOI:10.1590/S0100-204X2012000900004.
/*ref*/Lu, D., Hetrick, S. & Moran, E.F. 2010, ‘Land cover classification in a complex urban-rural landscape with quickbird imagery’, Photogrammetric Engineering & Remote Sensing, vol. 76, no. 10, pp. 1159-68, DOI:10.14358/PERS.76.10.1159.
/*ref*/Malarvizh, K., Kumar, S.V. & Porchelvan, P. 2016, ‘Use of high resolution Google Earth satellite imagery in landuse map preparation for urban related applications’, Procedia Technology, vol. 24, no.1, pp. 1835-42, DOI:10.1016/j.protcy.2016.05.231.
/*ref*/Mello, A.Y.I., Alves, D.S., Linhares, C.A. & Lima, F.B. 2012, ‘Avaliação de técnicas de classificação digital de imagens Landsat em diferentes padrões de cobertura da terra em Rondônia’, Revista Árvore, vol. 36, no. 3, pp. 537-47, DOI:10.1590/S0100-67622012000300016
/*ref*/Oliveira, M.Z., Veronez, M.R., Turani, M. & Reinhardt, A.O. 2009, ‘Imagens do Google Earth para fins de planejamento ambiental: uma análise de exatidão para o município de São Leopoldo/RS’, Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 2009, pp. 1835-42, <http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.10.17.37/doc/1835-1842.pdf>
/*ref*/Oyekola, M.A. & Adewuyi, G.K. 2018, ‘Unsupervised Classification in Land Cover Types Using Remote Sensing and GIS Techniques’, International Journal of Science and Engineering Investigations, vol. 7, no. 72, pp. 11-18, <https://www.researchgate.net/publication/326623967_Unsupervised_Classification_in_Land_Cover_Types_Using_Remote_Sensing_and_GIS_Techniques>.
/*ref*/Queiroz, T.B., Sousa, R.D.S., Baldin, T., Batista, F.D.J., Marchesan, J., Pedrali, L.D. & Pereira, R.S. 2017, ‘Avaliação do desempenho da classificação do uso e cobertura da terra a partir de imagens Landsat 8 e Rapideye na região central do Rio Grande do Sul’, Geociências, vol. 36, no. 3, pp. 569-78.
/*ref*/Samaniego, L., Bárdossy, A. & Schulz, K. 2008, ‘Supervised classification of remotely sensed imagery using a modified k-NN technique’, IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 7, pp. 2112-25, DOI:10.1109/TGRS.2008.916629.
/*ref*/Santos, L.A.C. & Lima, P.E.M. 2018, ‘Comparação entre diferentes algoritmos de classificação supervisionada no mapeamento temático de uma bacia hidrográfica’, Revista TreeDimensional, ProFloresta, vol. 3, no. 5, pp. 27-41, <http://www.treedimensional.org/revista/2018a/comparacao.pdf>.
/*ref*/Schneider, A. 2012, ‘Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approuch’, Remote Sensing of Environment, vol. 124, n. 1, pp. 689-704, DOI:10.1016/j.rse.2012.06.006.
/*ref*/Strahler, A.H. 1980, ‘The use of prior probabilities in maximum likelihood classification of remotely sensed data’, Remote Sensing of Environment, vol. 10, no. 2, pp. 135-63, DOI:10.1016/0034-4257(80)90011-5.
/*ref*/Tommaselli, A.M.G., Silva, J.F.C., Hasegawa, J.K., Galo, M. & Dal Poz, A.P. 1999, ‘Fotogrametria: aplicações a curta distância’ in M. Menguete Jr. & N. Alves (orgs), FCT 40 anos, Perfil Científico Educacional, UNESP/FCT, São Paulo, pp. 147-59, <https://www.researchgate.net/publication/267035028_FOTOGRAMETRIA_aplicacoes_a_curta_distancia>.
/*ref*/Wibowo, A., Salleh, K.O., Frans, F.T.R.S. & Semedi, J.M. 2016, ‘Spatial temporal land use change detection using Google Earth data’, In IOP Conference Series: Earth and Environmental Science, vol. 47, no. 1, 012031. DOI:10.1088/1755-1315/47/1/012031
/*ref*/Zanetti, J., Braga, F.L.S & Duarte, D.C.O. 2017, ‘Comparação dos métodos de classificação supervisionada de imagem máxima verossimilhança, distância euclidiana, paralelepípedo e redes neurais em imagens Vant, utilizando o método de Exatidão Global, índice Kappa e o Tau’, Anais do IV Simpósio Brasileiro de Geomática – SBG, Presidente Prudente, 2017, pp. 244-50.
/*ref*/Zhenkui, M.A. & Redmond, R.L. 1995, ‘Tau coefficients for accuracy assessment of classification of remote sensing data’, Photogrammetric Engineering and Remote Sensing, vol. 61, no. 4, pp. 63-152, <https://www.asprs.org/wp-content/uploads/pers/1995journal/apr/1995_apr_435-439.pdf>
dc.rights.driver.fl_str_mv Copyright (c) 2022 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 45 (2022)
Anuário do Instituto de Geociências; Vol 45 (2022)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1822178673238736896
dc.identifier.doi.none.fl_str_mv 10.11137/1982-3908_2022_45_47481