Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)

Detalhes bibliográficos
Autor(a) principal: Paula, Maria Clara Lopes
Data de Publicação: 2020
Outros Autores: Borges, Welitom Rodrigues, Almeida, Isabela Resende
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/38561
Resumo: The state of Mato Grosso (MT) is the fifth largest gold producer in Brazil, with much of it coming from the Baixada Cuiabana region. In this region, gold occurs in primary deposit associated with quartz veins and their host metasedimentary rocks of the Cuiabá Group and secondary sedimentary deposits (such as colluviums, alluviums and eluviums), the latter being quite profitable and easy to exploit. The gold exploitation in these areas often results in deforestation of the Pantanal biome, as mining uses random subsoil scarification to locate the deposits. In this study, the Ground Penetrating Radar (GPR) geophysical method was applied to differentiate and locate alluvial, colluvial and eluvial deposits. This may help to mitigate the local deforestation process. Thus, the acquisition of GPR data took place in a gold mine located in the municipality of Nossa Senhora do Livramento. The GPR recordings were done with a 200 MHz shielded antenna, along with ditches and gravel exposures. The results show variability of the electromagnetic wave velocity between 0.085 to 0.146 m/ns, with normalized amplitudes of -1 to 1 ranging between maximum values of -0.8 and 0.8. The lowest velocity values were found for gravels of alluvial origin. The intermediate velocity of 0.090 m/ns is associated with eluviums and the highest velocity (0.146 m/ns) is associated with gravel of colluvial origin. GPR was efficient to distinguish secondary sedimentary deposits in the Baixada Cuibana, becoming a prospective alternative for the region.
id UFRJ-21_08fe50c6dd677fa7debe741c9bc5e1e5
oai_identifier_str oai:www.revistas.ufrj.br:article/38561
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)Ground Penetration Radar; Secondary Deposits; Baixada CuiabanaThe state of Mato Grosso (MT) is the fifth largest gold producer in Brazil, with much of it coming from the Baixada Cuiabana region. In this region, gold occurs in primary deposit associated with quartz veins and their host metasedimentary rocks of the Cuiabá Group and secondary sedimentary deposits (such as colluviums, alluviums and eluviums), the latter being quite profitable and easy to exploit. The gold exploitation in these areas often results in deforestation of the Pantanal biome, as mining uses random subsoil scarification to locate the deposits. In this study, the Ground Penetrating Radar (GPR) geophysical method was applied to differentiate and locate alluvial, colluvial and eluvial deposits. This may help to mitigate the local deforestation process. Thus, the acquisition of GPR data took place in a gold mine located in the municipality of Nossa Senhora do Livramento. The GPR recordings were done with a 200 MHz shielded antenna, along with ditches and gravel exposures. The results show variability of the electromagnetic wave velocity between 0.085 to 0.146 m/ns, with normalized amplitudes of -1 to 1 ranging between maximum values of -0.8 and 0.8. The lowest velocity values were found for gravels of alluvial origin. The intermediate velocity of 0.090 m/ns is associated with eluviums and the highest velocity (0.146 m/ns) is associated with gravel of colluvial origin. GPR was efficient to distinguish secondary sedimentary deposits in the Baixada Cuibana, becoming a prospective alternative for the region.Universidade Federal do Rio de JaneiroPaula, Maria Clara LopesBorges, Welitom RodriguesAlmeida, Isabela Resende2020-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3856110.11137/2020_3_84_97Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_97Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_971982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/38561/21120/*ref*/Alvarenga, C.J.S. & Trompette, R. 1993. Brasiliano tectonic of the Paraguay Belt: the structural development of the Cuiabá region. Revista Brasileira de Geociências, 23: 18-30. Barboza, E.S. 2008. Gênese e controle estrutural das mineralizações Auríferas do Grupo Cuiabá, na Província Cuiabá-Poconé, centro Sul do Estado de Mato Grosso–Brasil. Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Tese de Doutorado, 155p. Beres Jr, M. & Haeni, F.P. 1991. Application of ground‐penetrating‐radar Methods in Hydrogeologie Studies. Groundwater, 29(3): 375-386. Beres, M.; Green, A.; Huggenberger, P. & Horstmeyer, H. 1995. Mapping the architecture of glaciofluvial sediments with three-dimensional georadar. Geology, 23(12): 1087-1090. Bersezio, R.; Giudici, M. & Mele, M. 2007. Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202(1-2): 230-248. Calder, M. & Kennedy, D.M. 2013. The Application of Ground Penetrating Radar in Delineating Shore Platform Morphology: A Case Study from Wellington, New Zealand. Journal of Coastal Research, 29(6a): 226-234. Chen, D.L.; Huang, C.L. & Su, Y.A. 2004. An integrated method of statistical method and Hough transform for GPR targets detection and location. Acta Electronica Sinica, 32(9): 1468-1471. Davis, J.L.; Annan, A.P. & Vaughan, C.J. 1984. Placer exploration using radar and seismic methods. In: SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS, 1984. Society of Exploration Geophysicists, p. 306-308. Del’Rey Silva, L.J.H. 1990. Ouro no Grupo Cuiabá, Mato Grosso: contrôles estruturais e implicações tectônicas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 36, No. 6, 1990. do Couto Tokashiki, C. & Saes, G.S. 2008. Revisão estratigrafica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista brasileira de Geociências, 38(4): 661-675. Engdahl, N.B.; Weissmann, G.S. & Bonal, N.D. 2010. An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics. Computational Geosciences, 14(2): 217-229. Fernandes, J.C. & Miranda, J.G. 2006. Províncias e distritos auríferos do mato grosso: Produção garimpeira e industrial. In: VIANA, F. (ed.). Coletânea Geológica do Mato Grosso., Editora UFMT, 2:p. 07-33. Ferreira Filho, O.B. 2019. Anuário Mineral Brasileiro: Principais Substâncias Metálicas - Ano Base 2017. In: Anuário Mineral Brasileiro, Brasília, Brasil, Agência Nacional de Mineração (ANM), p. 34. Francké, J.C. & Yelf, R. 2003. Applications of GPR for surface mining. In: PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON ADVANCED GROUND PENETRATING RADAR, 2003. IEEE, p. 115-119. Heinz, J.; Kleineidam, S.; Teutsch, G. & Aigner, T. 2003. Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sedimentary geology, 158(1-2): 1-23. Huggenberger, P.; Meier, E. & Pugin, A. 1994. Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: advances in data-processing and facies analysis. Journal of Applied Geophysics, 31(1-4): 171-184. Kostic, B.; Becht, A. & Aigner, T. 2005. 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implications for hydrostratigraphy. Sedimentary Geology, 181(3-4): 147-171. Luz, J.S.; Oliveira, A.M.; Souza, J.O.; Motta, J.J.I.M.; Tanno, L.C.; Carmo, L.S. & Souza, N.B. 1980. Projeto Coxipó–relatório Final. Companhia de Pesquisa de Recursos Minerais. Superintendência Regional de Goiânia. DNPM CPRM, 1: 136. Moysey, S.; Knight, R.J. & Jol, H.M. 2006. Texture-based classification of ground-penetrating radar images. Geophysics, 71(6): K111-K118. Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3-4): 261-330. Pires, F.R.M.; Gonçalves, F.T.T.; Ribeiro, L.A.S. & Siqueira, A.J.B. 1986. Controle das mineralizações auríferas do Grupo Cuiabá, Mato Grosso. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 34, p. 2383-2395, 1986. Pueyo Anchuela, Ó.; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M.J. & Gil Garbi, H. 2016. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity. Geophysical Journal International, 206(1): 557-573. Rauber, M.; Stauffer, F.; Huggenberger, P. & Dracos, T. 1998. A numerical three‐dimensional conditioned/unconditioned stochastic facies type model applied to a remediation well system. Water Resources Research, 34(9): 2225-2233. Regli, C.; Huggenberger, P. & Rauber, M. 2002. Interpretation of drill core and georadar data of coarse gravel deposits. Journal of Hydrology, 255(1-4): 234-252. Sandmeier, K.J. 2011. Reflexw 6.0 Manual Sandmeier Software, Karlsruhe. Available in: <https://www.sandmeier-geo.de/>. Silva, C.H.; Simões, L.S.A. & Ruiz, A.S. 2016. Caracterização estrutural dos veios de quartzo auríferos da região de Cuiabá (MT). Revista Brasileira de Geociências, 32(4): 407-418. Tebchrany, E.; Sagnard, F.; Baltazart, V.; Tarel, J.P. & Derobert, X. 2014. Assessment of statistical-based clutter reduction techniques on ground-coupled GPR data for the detection of buried objects in soils. In: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2014. IEEE, p. 604-609. Vandenberghe, J. & Van Overmeeren, R.A. 1999. Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sedimentary Geology, 128(3-4): 245-270. Watts, A. & Gubins, A.G. 1997. Exploring for nickel in the 90s, or ‘til depth us do par’. In: PROCEEDINGS OF EXPLORATION, Vol. 97, p. 1003-1014, 1997.Copyright (c) 2020 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2020-10-06T16:22:34Zoai:www.revistas.ufrj.br:article/38561Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2020-10-06T16:22:34Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
title Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
spellingShingle Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
Paula, Maria Clara Lopes
Ground Penetration Radar; Secondary Deposits; Baixada Cuiabana
title_short Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
title_full Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
title_fullStr Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
title_full_unstemmed Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
title_sort Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
author Paula, Maria Clara Lopes
author_facet Paula, Maria Clara Lopes
Borges, Welitom Rodrigues
Almeida, Isabela Resende
author_role author
author2 Borges, Welitom Rodrigues
Almeida, Isabela Resende
author2_role author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Paula, Maria Clara Lopes
Borges, Welitom Rodrigues
Almeida, Isabela Resende
dc.subject.none.fl_str_mv
dc.subject.por.fl_str_mv Ground Penetration Radar; Secondary Deposits; Baixada Cuiabana
topic Ground Penetration Radar; Secondary Deposits; Baixada Cuiabana
description The state of Mato Grosso (MT) is the fifth largest gold producer in Brazil, with much of it coming from the Baixada Cuiabana region. In this region, gold occurs in primary deposit associated with quartz veins and their host metasedimentary rocks of the Cuiabá Group and secondary sedimentary deposits (such as colluviums, alluviums and eluviums), the latter being quite profitable and easy to exploit. The gold exploitation in these areas often results in deforestation of the Pantanal biome, as mining uses random subsoil scarification to locate the deposits. In this study, the Ground Penetrating Radar (GPR) geophysical method was applied to differentiate and locate alluvial, colluvial and eluvial deposits. This may help to mitigate the local deforestation process. Thus, the acquisition of GPR data took place in a gold mine located in the municipality of Nossa Senhora do Livramento. The GPR recordings were done with a 200 MHz shielded antenna, along with ditches and gravel exposures. The results show variability of the electromagnetic wave velocity between 0.085 to 0.146 m/ns, with normalized amplitudes of -1 to 1 ranging between maximum values of -0.8 and 0.8. The lowest velocity values were found for gravels of alluvial origin. The intermediate velocity of 0.090 m/ns is associated with eluviums and the highest velocity (0.146 m/ns) is associated with gravel of colluvial origin. GPR was efficient to distinguish secondary sedimentary deposits in the Baixada Cuibana, becoming a prospective alternative for the region.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-30
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/38561
10.11137/2020_3_84_97
url https://revistas.ufrj.br/index.php/aigeo/article/view/38561
identifier_str_mv 10.11137/2020_3_84_97
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/38561/21120
/*ref*/Alvarenga, C.J.S. & Trompette, R. 1993. Brasiliano tectonic of the Paraguay Belt: the structural development of the Cuiabá region. Revista Brasileira de Geociências, 23: 18-30. Barboza, E.S. 2008. Gênese e controle estrutural das mineralizações Auríferas do Grupo Cuiabá, na Província Cuiabá-Poconé, centro Sul do Estado de Mato Grosso–Brasil. Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Tese de Doutorado, 155p. Beres Jr, M. & Haeni, F.P. 1991. Application of ground‐penetrating‐radar Methods in Hydrogeologie Studies. Groundwater, 29(3): 375-386. Beres, M.; Green, A.; Huggenberger, P. & Horstmeyer, H. 1995. Mapping the architecture of glaciofluvial sediments with three-dimensional georadar. Geology, 23(12): 1087-1090. Bersezio, R.; Giudici, M. & Mele, M. 2007. Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202(1-2): 230-248. Calder, M. & Kennedy, D.M. 2013. The Application of Ground Penetrating Radar in Delineating Shore Platform Morphology: A Case Study from Wellington, New Zealand. Journal of Coastal Research, 29(6a): 226-234. Chen, D.L.; Huang, C.L. & Su, Y.A. 2004. An integrated method of statistical method and Hough transform for GPR targets detection and location. Acta Electronica Sinica, 32(9): 1468-1471. Davis, J.L.; Annan, A.P. & Vaughan, C.J. 1984. Placer exploration using radar and seismic methods. In: SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS, 1984. Society of Exploration Geophysicists, p. 306-308. Del’Rey Silva, L.J.H. 1990. Ouro no Grupo Cuiabá, Mato Grosso: contrôles estruturais e implicações tectônicas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 36, No. 6, 1990. do Couto Tokashiki, C. & Saes, G.S. 2008. Revisão estratigrafica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista brasileira de Geociências, 38(4): 661-675. Engdahl, N.B.; Weissmann, G.S. & Bonal, N.D. 2010. An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics. Computational Geosciences, 14(2): 217-229. Fernandes, J.C. & Miranda, J.G. 2006. Províncias e distritos auríferos do mato grosso: Produção garimpeira e industrial. In: VIANA, F. (ed.). Coletânea Geológica do Mato Grosso., Editora UFMT, 2:p. 07-33. Ferreira Filho, O.B. 2019. Anuário Mineral Brasileiro: Principais Substâncias Metálicas - Ano Base 2017. In: Anuário Mineral Brasileiro, Brasília, Brasil, Agência Nacional de Mineração (ANM), p. 34. Francké, J.C. & Yelf, R. 2003. Applications of GPR for surface mining. In: PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON ADVANCED GROUND PENETRATING RADAR, 2003. IEEE, p. 115-119. Heinz, J.; Kleineidam, S.; Teutsch, G. & Aigner, T. 2003. Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sedimentary geology, 158(1-2): 1-23. Huggenberger, P.; Meier, E. & Pugin, A. 1994. Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: advances in data-processing and facies analysis. Journal of Applied Geophysics, 31(1-4): 171-184. Kostic, B.; Becht, A. & Aigner, T. 2005. 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implications for hydrostratigraphy. Sedimentary Geology, 181(3-4): 147-171. Luz, J.S.; Oliveira, A.M.; Souza, J.O.; Motta, J.J.I.M.; Tanno, L.C.; Carmo, L.S. & Souza, N.B. 1980. Projeto Coxipó–relatório Final. Companhia de Pesquisa de Recursos Minerais. Superintendência Regional de Goiânia. DNPM CPRM, 1: 136. Moysey, S.; Knight, R.J. & Jol, H.M. 2006. Texture-based classification of ground-penetrating radar images. Geophysics, 71(6): K111-K118. Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3-4): 261-330. Pires, F.R.M.; Gonçalves, F.T.T.; Ribeiro, L.A.S. & Siqueira, A.J.B. 1986. Controle das mineralizações auríferas do Grupo Cuiabá, Mato Grosso. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 34, p. 2383-2395, 1986. Pueyo Anchuela, Ó.; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M.J. & Gil Garbi, H. 2016. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity. Geophysical Journal International, 206(1): 557-573. Rauber, M.; Stauffer, F.; Huggenberger, P. & Dracos, T. 1998. A numerical three‐dimensional conditioned/unconditioned stochastic facies type model applied to a remediation well system. Water Resources Research, 34(9): 2225-2233. Regli, C.; Huggenberger, P. & Rauber, M. 2002. Interpretation of drill core and georadar data of coarse gravel deposits. Journal of Hydrology, 255(1-4): 234-252. Sandmeier, K.J. 2011. Reflexw 6.0 Manual Sandmeier Software, Karlsruhe. Available in: <https://www.sandmeier-geo.de/>. Silva, C.H.; Simões, L.S.A. & Ruiz, A.S. 2016. Caracterização estrutural dos veios de quartzo auríferos da região de Cuiabá (MT). Revista Brasileira de Geociências, 32(4): 407-418. Tebchrany, E.; Sagnard, F.; Baltazart, V.; Tarel, J.P. & Derobert, X. 2014. Assessment of statistical-based clutter reduction techniques on ground-coupled GPR data for the detection of buried objects in soils. In: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2014. IEEE, p. 604-609. Vandenberghe, J. & Van Overmeeren, R.A. 1999. Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sedimentary Geology, 128(3-4): 245-270. Watts, A. & Gubins, A.G. 1997. Exploring for nickel in the 90s, or ‘til depth us do par’. In: PROCEEDINGS OF EXPLORATION, Vol. 97, p. 1003-1014, 1997.
dc.rights.driver.fl_str_mv Copyright (c) 2020 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_97
Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_97
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053543915454464