Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/38561 |
Resumo: | The state of Mato Grosso (MT) is the fifth largest gold producer in Brazil, with much of it coming from the Baixada Cuiabana region. In this region, gold occurs in primary deposit associated with quartz veins and their host metasedimentary rocks of the Cuiabá Group and secondary sedimentary deposits (such as colluviums, alluviums and eluviums), the latter being quite profitable and easy to exploit. The gold exploitation in these areas often results in deforestation of the Pantanal biome, as mining uses random subsoil scarification to locate the deposits. In this study, the Ground Penetrating Radar (GPR) geophysical method was applied to differentiate and locate alluvial, colluvial and eluvial deposits. This may help to mitigate the local deforestation process. Thus, the acquisition of GPR data took place in a gold mine located in the municipality of Nossa Senhora do Livramento. The GPR recordings were done with a 200 MHz shielded antenna, along with ditches and gravel exposures. The results show variability of the electromagnetic wave velocity between 0.085 to 0.146 m/ns, with normalized amplitudes of -1 to 1 ranging between maximum values of -0.8 and 0.8. The lowest velocity values were found for gravels of alluvial origin. The intermediate velocity of 0.090 m/ns is associated with eluviums and the highest velocity (0.146 m/ns) is associated with gravel of colluvial origin. GPR was efficient to distinguish secondary sedimentary deposits in the Baixada Cuibana, becoming a prospective alternative for the region. |
id |
UFRJ-21_08fe50c6dd677fa7debe741c9bc5e1e5 |
---|---|
oai_identifier_str |
oai:www.revistas.ufrj.br:article/38561 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil)Ground Penetration Radar; Secondary Deposits; Baixada CuiabanaThe state of Mato Grosso (MT) is the fifth largest gold producer in Brazil, with much of it coming from the Baixada Cuiabana region. In this region, gold occurs in primary deposit associated with quartz veins and their host metasedimentary rocks of the Cuiabá Group and secondary sedimentary deposits (such as colluviums, alluviums and eluviums), the latter being quite profitable and easy to exploit. The gold exploitation in these areas often results in deforestation of the Pantanal biome, as mining uses random subsoil scarification to locate the deposits. In this study, the Ground Penetrating Radar (GPR) geophysical method was applied to differentiate and locate alluvial, colluvial and eluvial deposits. This may help to mitigate the local deforestation process. Thus, the acquisition of GPR data took place in a gold mine located in the municipality of Nossa Senhora do Livramento. The GPR recordings were done with a 200 MHz shielded antenna, along with ditches and gravel exposures. The results show variability of the electromagnetic wave velocity between 0.085 to 0.146 m/ns, with normalized amplitudes of -1 to 1 ranging between maximum values of -0.8 and 0.8. The lowest velocity values were found for gravels of alluvial origin. The intermediate velocity of 0.090 m/ns is associated with eluviums and the highest velocity (0.146 m/ns) is associated with gravel of colluvial origin. GPR was efficient to distinguish secondary sedimentary deposits in the Baixada Cuibana, becoming a prospective alternative for the region.Universidade Federal do Rio de JaneiroPaula, Maria Clara LopesBorges, Welitom RodriguesAlmeida, Isabela Resende2020-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3856110.11137/2020_3_84_97Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_97Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_971982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/38561/21120/*ref*/Alvarenga, C.J.S. & Trompette, R. 1993. Brasiliano tectonic of the Paraguay Belt: the structural development of the Cuiabá region. Revista Brasileira de Geociências, 23: 18-30. Barboza, E.S. 2008. Gênese e controle estrutural das mineralizações Auríferas do Grupo Cuiabá, na Província Cuiabá-Poconé, centro Sul do Estado de Mato Grosso–Brasil. Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Tese de Doutorado, 155p. Beres Jr, M. & Haeni, F.P. 1991. Application of ground‐penetrating‐radar Methods in Hydrogeologie Studies. Groundwater, 29(3): 375-386. Beres, M.; Green, A.; Huggenberger, P. & Horstmeyer, H. 1995. Mapping the architecture of glaciofluvial sediments with three-dimensional georadar. Geology, 23(12): 1087-1090. Bersezio, R.; Giudici, M. & Mele, M. 2007. Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202(1-2): 230-248. Calder, M. & Kennedy, D.M. 2013. The Application of Ground Penetrating Radar in Delineating Shore Platform Morphology: A Case Study from Wellington, New Zealand. Journal of Coastal Research, 29(6a): 226-234. Chen, D.L.; Huang, C.L. & Su, Y.A. 2004. An integrated method of statistical method and Hough transform for GPR targets detection and location. Acta Electronica Sinica, 32(9): 1468-1471. Davis, J.L.; Annan, A.P. & Vaughan, C.J. 1984. Placer exploration using radar and seismic methods. In: SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS, 1984. Society of Exploration Geophysicists, p. 306-308. Del’Rey Silva, L.J.H. 1990. Ouro no Grupo Cuiabá, Mato Grosso: contrôles estruturais e implicações tectônicas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 36, No. 6, 1990. do Couto Tokashiki, C. & Saes, G.S. 2008. Revisão estratigrafica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista brasileira de Geociências, 38(4): 661-675. Engdahl, N.B.; Weissmann, G.S. & Bonal, N.D. 2010. An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics. Computational Geosciences, 14(2): 217-229. Fernandes, J.C. & Miranda, J.G. 2006. Províncias e distritos auríferos do mato grosso: Produção garimpeira e industrial. In: VIANA, F. (ed.). Coletânea Geológica do Mato Grosso., Editora UFMT, 2:p. 07-33. Ferreira Filho, O.B. 2019. Anuário Mineral Brasileiro: Principais Substâncias Metálicas - Ano Base 2017. In: Anuário Mineral Brasileiro, Brasília, Brasil, Agência Nacional de Mineração (ANM), p. 34. Francké, J.C. & Yelf, R. 2003. Applications of GPR for surface mining. In: PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON ADVANCED GROUND PENETRATING RADAR, 2003. IEEE, p. 115-119. Heinz, J.; Kleineidam, S.; Teutsch, G. & Aigner, T. 2003. Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sedimentary geology, 158(1-2): 1-23. Huggenberger, P.; Meier, E. & Pugin, A. 1994. Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: advances in data-processing and facies analysis. Journal of Applied Geophysics, 31(1-4): 171-184. Kostic, B.; Becht, A. & Aigner, T. 2005. 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implications for hydrostratigraphy. Sedimentary Geology, 181(3-4): 147-171. Luz, J.S.; Oliveira, A.M.; Souza, J.O.; Motta, J.J.I.M.; Tanno, L.C.; Carmo, L.S. & Souza, N.B. 1980. Projeto Coxipó–relatório Final. Companhia de Pesquisa de Recursos Minerais. Superintendência Regional de Goiânia. DNPM CPRM, 1: 136. Moysey, S.; Knight, R.J. & Jol, H.M. 2006. Texture-based classification of ground-penetrating radar images. Geophysics, 71(6): K111-K118. Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3-4): 261-330. Pires, F.R.M.; Gonçalves, F.T.T.; Ribeiro, L.A.S. & Siqueira, A.J.B. 1986. Controle das mineralizações auríferas do Grupo Cuiabá, Mato Grosso. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 34, p. 2383-2395, 1986. Pueyo Anchuela, Ó.; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M.J. & Gil Garbi, H. 2016. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity. Geophysical Journal International, 206(1): 557-573. Rauber, M.; Stauffer, F.; Huggenberger, P. & Dracos, T. 1998. A numerical three‐dimensional conditioned/unconditioned stochastic facies type model applied to a remediation well system. Water Resources Research, 34(9): 2225-2233. Regli, C.; Huggenberger, P. & Rauber, M. 2002. Interpretation of drill core and georadar data of coarse gravel deposits. Journal of Hydrology, 255(1-4): 234-252. Sandmeier, K.J. 2011. Reflexw 6.0 Manual Sandmeier Software, Karlsruhe. Available in: <https://www.sandmeier-geo.de/>. Silva, C.H.; Simões, L.S.A. & Ruiz, A.S. 2016. Caracterização estrutural dos veios de quartzo auríferos da região de Cuiabá (MT). Revista Brasileira de Geociências, 32(4): 407-418. Tebchrany, E.; Sagnard, F.; Baltazart, V.; Tarel, J.P. & Derobert, X. 2014. Assessment of statistical-based clutter reduction techniques on ground-coupled GPR data for the detection of buried objects in soils. In: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2014. IEEE, p. 604-609. Vandenberghe, J. & Van Overmeeren, R.A. 1999. Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sedimentary Geology, 128(3-4): 245-270. Watts, A. & Gubins, A.G. 1997. Exploring for nickel in the 90s, or ‘til depth us do par’. In: PROCEEDINGS OF EXPLORATION, Vol. 97, p. 1003-1014, 1997.Copyright (c) 2020 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2020-10-06T16:22:34Zoai:www.revistas.ufrj.br:article/38561Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2020-10-06T16:22:34Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
title |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
spellingShingle |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) Paula, Maria Clara Lopes Ground Penetration Radar; Secondary Deposits; Baixada Cuiabana |
title_short |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
title_full |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
title_fullStr |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
title_full_unstemmed |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
title_sort |
Study of Radarfacies in Auriferous Placers at Baixada Cuiabana, Mato Grosso (Brazil) |
author |
Paula, Maria Clara Lopes |
author_facet |
Paula, Maria Clara Lopes Borges, Welitom Rodrigues Almeida, Isabela Resende |
author_role |
author |
author2 |
Borges, Welitom Rodrigues Almeida, Isabela Resende |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Paula, Maria Clara Lopes Borges, Welitom Rodrigues Almeida, Isabela Resende |
dc.subject.none.fl_str_mv |
|
dc.subject.por.fl_str_mv |
Ground Penetration Radar; Secondary Deposits; Baixada Cuiabana |
topic |
Ground Penetration Radar; Secondary Deposits; Baixada Cuiabana |
description |
The state of Mato Grosso (MT) is the fifth largest gold producer in Brazil, with much of it coming from the Baixada Cuiabana region. In this region, gold occurs in primary deposit associated with quartz veins and their host metasedimentary rocks of the Cuiabá Group and secondary sedimentary deposits (such as colluviums, alluviums and eluviums), the latter being quite profitable and easy to exploit. The gold exploitation in these areas often results in deforestation of the Pantanal biome, as mining uses random subsoil scarification to locate the deposits. In this study, the Ground Penetrating Radar (GPR) geophysical method was applied to differentiate and locate alluvial, colluvial and eluvial deposits. This may help to mitigate the local deforestation process. Thus, the acquisition of GPR data took place in a gold mine located in the municipality of Nossa Senhora do Livramento. The GPR recordings were done with a 200 MHz shielded antenna, along with ditches and gravel exposures. The results show variability of the electromagnetic wave velocity between 0.085 to 0.146 m/ns, with normalized amplitudes of -1 to 1 ranging between maximum values of -0.8 and 0.8. The lowest velocity values were found for gravels of alluvial origin. The intermediate velocity of 0.090 m/ns is associated with eluviums and the highest velocity (0.146 m/ns) is associated with gravel of colluvial origin. GPR was efficient to distinguish secondary sedimentary deposits in the Baixada Cuibana, becoming a prospective alternative for the region. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-30 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/38561 10.11137/2020_3_84_97 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/38561 |
identifier_str_mv |
10.11137/2020_3_84_97 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/38561/21120 /*ref*/Alvarenga, C.J.S. & Trompette, R. 1993. Brasiliano tectonic of the Paraguay Belt: the structural development of the Cuiabá region. Revista Brasileira de Geociências, 23: 18-30. Barboza, E.S. 2008. Gênese e controle estrutural das mineralizações Auríferas do Grupo Cuiabá, na Província Cuiabá-Poconé, centro Sul do Estado de Mato Grosso–Brasil. Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Tese de Doutorado, 155p. Beres Jr, M. & Haeni, F.P. 1991. Application of ground‐penetrating‐radar Methods in Hydrogeologie Studies. Groundwater, 29(3): 375-386. Beres, M.; Green, A.; Huggenberger, P. & Horstmeyer, H. 1995. Mapping the architecture of glaciofluvial sediments with three-dimensional georadar. Geology, 23(12): 1087-1090. Bersezio, R.; Giudici, M. & Mele, M. 2007. Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sedimentary Geology, 202(1-2): 230-248. Calder, M. & Kennedy, D.M. 2013. The Application of Ground Penetrating Radar in Delineating Shore Platform Morphology: A Case Study from Wellington, New Zealand. Journal of Coastal Research, 29(6a): 226-234. Chen, D.L.; Huang, C.L. & Su, Y.A. 2004. An integrated method of statistical method and Hough transform for GPR targets detection and location. Acta Electronica Sinica, 32(9): 1468-1471. Davis, J.L.; Annan, A.P. & Vaughan, C.J. 1984. Placer exploration using radar and seismic methods. In: SEG TECHNICAL PROGRAM EXPANDED ABSTRACTS, 1984. Society of Exploration Geophysicists, p. 306-308. Del’Rey Silva, L.J.H. 1990. Ouro no Grupo Cuiabá, Mato Grosso: contrôles estruturais e implicações tectônicas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 36, No. 6, 1990. do Couto Tokashiki, C. & Saes, G.S. 2008. Revisão estratigrafica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista brasileira de Geociências, 38(4): 661-675. Engdahl, N.B.; Weissmann, G.S. & Bonal, N.D. 2010. An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics. Computational Geosciences, 14(2): 217-229. Fernandes, J.C. & Miranda, J.G. 2006. Províncias e distritos auríferos do mato grosso: Produção garimpeira e industrial. In: VIANA, F. (ed.). Coletânea Geológica do Mato Grosso., Editora UFMT, 2:p. 07-33. Ferreira Filho, O.B. 2019. Anuário Mineral Brasileiro: Principais Substâncias Metálicas - Ano Base 2017. In: Anuário Mineral Brasileiro, Brasília, Brasil, Agência Nacional de Mineração (ANM), p. 34. Francké, J.C. & Yelf, R. 2003. Applications of GPR for surface mining. In: PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON ADVANCED GROUND PENETRATING RADAR, 2003. IEEE, p. 115-119. Heinz, J.; Kleineidam, S.; Teutsch, G. & Aigner, T. 2003. Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sedimentary geology, 158(1-2): 1-23. Huggenberger, P.; Meier, E. & Pugin, A. 1994. Ground-probing radar as a tool for heterogeneity estimation in gravel deposits: advances in data-processing and facies analysis. Journal of Applied Geophysics, 31(1-4): 171-184. Kostic, B.; Becht, A. & Aigner, T. 2005. 3-D sedimentary architecture of a Quaternary gravel delta (SW-Germany): Implications for hydrostratigraphy. Sedimentary Geology, 181(3-4): 147-171. Luz, J.S.; Oliveira, A.M.; Souza, J.O.; Motta, J.J.I.M.; Tanno, L.C.; Carmo, L.S. & Souza, N.B. 1980. Projeto Coxipó–relatório Final. Companhia de Pesquisa de Recursos Minerais. Superintendência Regional de Goiânia. DNPM CPRM, 1: 136. Moysey, S.; Knight, R.J. & Jol, H.M. 2006. Texture-based classification of ground-penetrating radar images. Geophysics, 71(6): K111-K118. Neal, A. 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-science reviews, 66(3-4): 261-330. Pires, F.R.M.; Gonçalves, F.T.T.; Ribeiro, L.A.S. & Siqueira, A.J.B. 1986. Controle das mineralizações auríferas do Grupo Cuiabá, Mato Grosso. In: CONGRESSO BRASILEIRO DE GEOLOGIA, Vol. 34, p. 2383-2395, 1986. Pueyo Anchuela, Ó.; Luzón, A.; Pérez, A.; Muñoz, A.; Mayayo, M.J. & Gil Garbi, H. 2016. Ground penetrating radar evaluation of the internal structure of fluvial tufa deposits (Dévanos-Añavieja system, NE Spain): an approach to different scales of heterogeneity. Geophysical Journal International, 206(1): 557-573. Rauber, M.; Stauffer, F.; Huggenberger, P. & Dracos, T. 1998. A numerical three‐dimensional conditioned/unconditioned stochastic facies type model applied to a remediation well system. Water Resources Research, 34(9): 2225-2233. Regli, C.; Huggenberger, P. & Rauber, M. 2002. Interpretation of drill core and georadar data of coarse gravel deposits. Journal of Hydrology, 255(1-4): 234-252. Sandmeier, K.J. 2011. Reflexw 6.0 Manual Sandmeier Software, Karlsruhe. Available in: <https://www.sandmeier-geo.de/>. Silva, C.H.; Simões, L.S.A. & Ruiz, A.S. 2016. Caracterização estrutural dos veios de quartzo auríferos da região de Cuiabá (MT). Revista Brasileira de Geociências, 32(4): 407-418. Tebchrany, E.; Sagnard, F.; Baltazart, V.; Tarel, J.P. & Derobert, X. 2014. Assessment of statistical-based clutter reduction techniques on ground-coupled GPR data for the detection of buried objects in soils. In: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR, 2014. IEEE, p. 604-609. Vandenberghe, J. & Van Overmeeren, R.A. 1999. Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sedimentary Geology, 128(3-4): 245-270. Watts, A. & Gubins, A.G. 1997. Exploring for nickel in the 90s, or ‘til depth us do par’. In: PROCEEDINGS OF EXPLORATION, Vol. 97, p. 1003-1014, 1997. |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_97 Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 84_97 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053543915454464 |