Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton

Detalhes bibliográficos
Autor(a) principal: Júnior, Armando Dias Tavares
Data de Publicação: 2019
Outros Autores: Geraldes, Mauro Cesar, Santos, Anderson Costa dos, Santos, Werlem Holanda dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/30645
Resumo: This work presents a detailed investigation on zircon crystals of a Mesoproterozoic granite from the SW Amazonian Craton using a combination of back scattered electron (BSE) imaging, thermal ionisation mass spectrometry (TIMS) and Raman scattering spectroscopy. Six zircon grains were analysed. The results plotted in the Concordia diagram yielded an upper intercept age of 1423.0 ± 3.8 Ma, which is interpreted as the crystallization age of the rock. The scattering of the analyses in such diagram indicates that U-Pb isotopes are volume-dependent in the studied zircon grains. BSE reveals zonation in the zircon crystals, and Hf is the main element causing the variability in the BSE intensity and U has a secondary effect. Both elements have much higher atomic number than the principal constituents of zircon (Zr, Si and O), so the substitution of Zr by U and Hf results in increasing image brightness. BSE images from the zircon grains exhibit a euhedral external shape and fine-scale euhedral oscillatory zoning. The predominance of magmatic zoned crystals points out that the granite has not suffered metamorphic heating or any other processes that induce the formation of new phases. The results of the Raman scattering technique indicate that a SiO4 tetrahedral internal vibrational structure is sufficiently sensitive to determine the increasing degree of metamictization. Furthermore, evidence for metamictization is given by the heterogeneity of the half-width values of the Raman scattering peaks, which exhibit a decreasing trend from the core to the rims of the analysed grains. We concluded that the combination of the three techniques provides information on the Pb loss and that the degree of U-Pb isotopic discordance correlates closely with the volume of the zircon grain. The data, in addition to the lateral degree of metamictization detected by the Raman scattering technique, indicate that the loss of radiogenic Pb may be linked to the continuous diffusion of this element. The correlation of the U-Pb discordance and metamictization emphasizes the importance of the Raman scattering spectroscopy analysis to performing zircon dating. Indeed, it is a helpful tool for geochronologists.
id UFRJ-21_1e7ed0b7519b8c453c65226672ff72c6
oai_identifier_str oai:www.revistas.ufrj.br:article/30645
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian CratonZircon; TIMS; SW Amazonian CratonThis work presents a detailed investigation on zircon crystals of a Mesoproterozoic granite from the SW Amazonian Craton using a combination of back scattered electron (BSE) imaging, thermal ionisation mass spectrometry (TIMS) and Raman scattering spectroscopy. Six zircon grains were analysed. The results plotted in the Concordia diagram yielded an upper intercept age of 1423.0 ± 3.8 Ma, which is interpreted as the crystallization age of the rock. The scattering of the analyses in such diagram indicates that U-Pb isotopes are volume-dependent in the studied zircon grains. BSE reveals zonation in the zircon crystals, and Hf is the main element causing the variability in the BSE intensity and U has a secondary effect. Both elements have much higher atomic number than the principal constituents of zircon (Zr, Si and O), so the substitution of Zr by U and Hf results in increasing image brightness. BSE images from the zircon grains exhibit a euhedral external shape and fine-scale euhedral oscillatory zoning. The predominance of magmatic zoned crystals points out that the granite has not suffered metamorphic heating or any other processes that induce the formation of new phases. The results of the Raman scattering technique indicate that a SiO4 tetrahedral internal vibrational structure is sufficiently sensitive to determine the increasing degree of metamictization. Furthermore, evidence for metamictization is given by the heterogeneity of the half-width values of the Raman scattering peaks, which exhibit a decreasing trend from the core to the rims of the analysed grains. We concluded that the combination of the three techniques provides information on the Pb loss and that the degree of U-Pb isotopic discordance correlates closely with the volume of the zircon grain. The data, in addition to the lateral degree of metamictization detected by the Raman scattering technique, indicate that the loss of radiogenic Pb may be linked to the continuous diffusion of this element. The correlation of the U-Pb discordance and metamictization emphasizes the importance of the Raman scattering spectroscopy analysis to performing zircon dating. Indeed, it is a helpful tool for geochronologists.Universidade Federal do Rio de JaneiroJúnior, Armando Dias TavaresGeraldes, Mauro CesarSantos, Anderson Costa dosSantos, Werlem Holanda dos2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3064510.11137/2019_1_483_489Anuário do Instituto de Geociências; Vol 42, No 1 (2019); 483-489Anuário do Instituto de Geociências; Vol 42, No 1 (2019); 483-4891982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/30645/17329Copyright (c) 2019 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2019-12-10T15:03:30Zoai:www.revistas.ufrj.br:article/30645Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2019-12-10T15:03:30Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton

title Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
spellingShingle Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
Júnior, Armando Dias Tavares
Zircon; TIMS; SW Amazonian Craton
title_short Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
title_full Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
title_fullStr Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
title_full_unstemmed Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
title_sort Continuous Diffusion Pb Loss in Igneous Zircon: A BSE, ID-TIMS and Raman Spectroscopy Study on a Mesoproterozoic Granite from the SW Amazonian Craton
author Júnior, Armando Dias Tavares
author_facet Júnior, Armando Dias Tavares
Geraldes, Mauro Cesar
Santos, Anderson Costa dos
Santos, Werlem Holanda dos
author_role author
author2 Geraldes, Mauro Cesar
Santos, Anderson Costa dos
Santos, Werlem Holanda dos
author2_role author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Júnior, Armando Dias Tavares
Geraldes, Mauro Cesar
Santos, Anderson Costa dos
Santos, Werlem Holanda dos
dc.subject.none.fl_str_mv
dc.subject.por.fl_str_mv Zircon; TIMS; SW Amazonian Craton
topic Zircon; TIMS; SW Amazonian Craton
description This work presents a detailed investigation on zircon crystals of a Mesoproterozoic granite from the SW Amazonian Craton using a combination of back scattered electron (BSE) imaging, thermal ionisation mass spectrometry (TIMS) and Raman scattering spectroscopy. Six zircon grains were analysed. The results plotted in the Concordia diagram yielded an upper intercept age of 1423.0 ± 3.8 Ma, which is interpreted as the crystallization age of the rock. The scattering of the analyses in such diagram indicates that U-Pb isotopes are volume-dependent in the studied zircon grains. BSE reveals zonation in the zircon crystals, and Hf is the main element causing the variability in the BSE intensity and U has a secondary effect. Both elements have much higher atomic number than the principal constituents of zircon (Zr, Si and O), so the substitution of Zr by U and Hf results in increasing image brightness. BSE images from the zircon grains exhibit a euhedral external shape and fine-scale euhedral oscillatory zoning. The predominance of magmatic zoned crystals points out that the granite has not suffered metamorphic heating or any other processes that induce the formation of new phases. The results of the Raman scattering technique indicate that a SiO4 tetrahedral internal vibrational structure is sufficiently sensitive to determine the increasing degree of metamictization. Furthermore, evidence for metamictization is given by the heterogeneity of the half-width values of the Raman scattering peaks, which exhibit a decreasing trend from the core to the rims of the analysed grains. We concluded that the combination of the three techniques provides information on the Pb loss and that the degree of U-Pb isotopic discordance correlates closely with the volume of the zircon grain. The data, in addition to the lateral degree of metamictization detected by the Raman scattering technique, indicate that the loss of radiogenic Pb may be linked to the continuous diffusion of this element. The correlation of the U-Pb discordance and metamictization emphasizes the importance of the Raman scattering spectroscopy analysis to performing zircon dating. Indeed, it is a helpful tool for geochronologists.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/30645
10.11137/2019_1_483_489
url https://revistas.ufrj.br/index.php/aigeo/article/view/30645
identifier_str_mv 10.11137/2019_1_483_489
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/30645/17329
dc.rights.driver.fl_str_mv Copyright (c) 2019 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 42, No 1 (2019); 483-489
Anuário do Instituto de Geociências; Vol 42, No 1 (2019); 483-489
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053538993438720