QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard

Detalhes bibliográficos
Autor(a) principal: Elias, Elias Nasr Naim
Data de Publicação: 2023
Outros Autores: Giehl, Samoel, Amorim, Fabricio Rosa, Schmidt, Marcio Augusto Reolon, Camboim, Silvana Philippi, Fernandes, Vivian de Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/54245
Resumo: This paper presents the development of a QGIS plugin to support evaluating the planimetric positional quality for point and linear features based on the metrics established by Brazilian legislation. For this purpose, we used the QGIS environment Graphical Modeler, which consists of an interface to concatenate a series of processes into a single algorithm. The set of tools, called QPEC, allows for performing the statistical tests from the automatic identification of the sample size and discrepancies. In order to demonstrate  the implemented functionalities, a case study was carried out. In this illustrative example, the vector files from the Cartographic and Cadastral  System of the Municipality of Salvador - BA (SICAD) were the reference data, and their homologous OpenStreetMap (OSM) features were the analysed database. The results obtained are presented in the attributes table. In addition, the spatial distribution of the discrepancies is visualised through the visual variable colour value in a quartile classification. The creation of this toolset corroborates the feasibility of developing more visual, automated and complete interfaces to support users of geospatial data in analysing the quality of the information available, especially when it involves free applications with open-source code.
id UFRJ-21_3fbc5e7d4ff5616bc4a603fe4663a430
oai_identifier_str oai:ojs.pkp.sfu.ca:article/54245
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy StandardPlanimetric positional accuracyQGIS pluginPythonThis paper presents the development of a QGIS plugin to support evaluating the planimetric positional quality for point and linear features based on the metrics established by Brazilian legislation. For this purpose, we used the QGIS environment Graphical Modeler, which consists of an interface to concatenate a series of processes into a single algorithm. The set of tools, called QPEC, allows for performing the statistical tests from the automatic identification of the sample size and discrepancies. In order to demonstrate  the implemented functionalities, a case study was carried out. In this illustrative example, the vector files from the Cartographic and Cadastral  System of the Municipality of Salvador - BA (SICAD) were the reference data, and their homologous OpenStreetMap (OSM) features were the analysed database. The results obtained are presented in the attributes table. In addition, the spatial distribution of the discrepancies is visualised through the visual variable colour value in a quartile classification. The creation of this toolset corroborates the feasibility of developing more visual, automated and complete interfaces to support users of geospatial data in analysing the quality of the information available, especially when it involves free applications with open-source code.Universidade Federal do Rio de Janeiro2023-04-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/vnd.openxmlformats-officedocument.wordprocessingml.documenthttps://revistas.ufrj.br/index.php/aigeo/article/view/5424510.11137/1982-3908_2023_46_54245Anuário do Instituto de Geociências; v. 46 (2023)Anuário do Instituto de Geociências; Vol. 46 (2023)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/54245/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/54245/39022https://revistas.ufrj.br/index.php/aigeo/article/view/54245/39092https://revistas.ufrj.br/index.php/aigeo/article/view/54245/39161Copyright (c) 2023 Anuário do Instituto de Geociênciasinfo:eu-repo/semantics/openAccessElias, Elias Nasr NaimGiehl, SamoelAmorim, Fabricio RosaSchmidt, Marcio Augusto ReolonCamboim, Silvana PhilippiFernandes, Vivian de Oliveira2023-04-21T22:47:00Zoai:ojs.pkp.sfu.ca:article/54245Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2023-04-21T22:47Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
title QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
spellingShingle QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
Elias, Elias Nasr Naim
Planimetric positional accuracy
QGIS plugin
Python
title_short QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
title_full QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
title_fullStr QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
title_full_unstemmed QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
title_sort QPEC: QGIS Toolkit for Evaluating Geospatial Data Positional Accuracy according to the Brazilian Cartographic Accuracy Standard
author Elias, Elias Nasr Naim
author_facet Elias, Elias Nasr Naim
Giehl, Samoel
Amorim, Fabricio Rosa
Schmidt, Marcio Augusto Reolon
Camboim, Silvana Philippi
Fernandes, Vivian de Oliveira
author_role author
author2 Giehl, Samoel
Amorim, Fabricio Rosa
Schmidt, Marcio Augusto Reolon
Camboim, Silvana Philippi
Fernandes, Vivian de Oliveira
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Elias, Elias Nasr Naim
Giehl, Samoel
Amorim, Fabricio Rosa
Schmidt, Marcio Augusto Reolon
Camboim, Silvana Philippi
Fernandes, Vivian de Oliveira
dc.subject.por.fl_str_mv Planimetric positional accuracy
QGIS plugin
Python
topic Planimetric positional accuracy
QGIS plugin
Python
description This paper presents the development of a QGIS plugin to support evaluating the planimetric positional quality for point and linear features based on the metrics established by Brazilian legislation. For this purpose, we used the QGIS environment Graphical Modeler, which consists of an interface to concatenate a series of processes into a single algorithm. The set of tools, called QPEC, allows for performing the statistical tests from the automatic identification of the sample size and discrepancies. In order to demonstrate  the implemented functionalities, a case study was carried out. In this illustrative example, the vector files from the Cartographic and Cadastral  System of the Municipality of Salvador - BA (SICAD) were the reference data, and their homologous OpenStreetMap (OSM) features were the analysed database. The results obtained are presented in the attributes table. In addition, the spatial distribution of the discrepancies is visualised through the visual variable colour value in a quartile classification. The creation of this toolset corroborates the feasibility of developing more visual, automated and complete interfaces to support users of geospatial data in analysing the quality of the information available, especially when it involves free applications with open-source code.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/54245
10.11137/1982-3908_2023_46_54245
url https://revistas.ufrj.br/index.php/aigeo/article/view/54245
identifier_str_mv 10.11137/1982-3908_2023_46_54245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/54245/pdf
https://revistas.ufrj.br/index.php/aigeo/article/view/54245/39022
https://revistas.ufrj.br/index.php/aigeo/article/view/54245/39092
https://revistas.ufrj.br/index.php/aigeo/article/view/54245/39161
dc.rights.driver.fl_str_mv Copyright (c) 2023 Anuário do Instituto de Geociências
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Anuário do Instituto de Geociências
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/vnd.openxmlformats-officedocument.wordprocessingml.document
application/vnd.openxmlformats-officedocument.wordprocessingml.document
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; v. 46 (2023)
Anuário do Instituto de Geociências; Vol. 46 (2023)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053535741804544