Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/39850 |
Resumo: | Este trabalho teve como objetivo avaliar mudanças nos valores de precipitação e temperatura médios sobre o estado de São Paulo (Brasil) e em três índices de extremos climáticos (dias secos consecutivos – CDD, extremos chuvosos – R95p e duração de ondas de calor – HWD), entre o período presente e o final do século XXI, a partir de um modelo climático regional. Foram utilizadas três simulações/projeções do Regional Climate Model (RegCM4) para o clima presente (1995-2014) e futuro (2080-2100), e a análise foi dividida nas estações de verão (DJF) e inverno (JJA). As simulações consideram o cenário mais pessimista de concentração de gases de efeito estufa na atmosfera do IPCC (RCP8.5). Dados observados do Climate Prediction Center (CPC) são utilizados para analisar a destreza das simulações no clima presente da precipitação e da temperatura do ar. No verão, as simulações superestimam a precipitação no litoral, enquanto no inverno a representam mais próxima do observado. Para a temperatura do ar, há subestimativas no litoral sul para ambas as estações do ano. No interior do estado, as temperaturas simuladas no verão são próximas ao observado, já no inverno observa-se superestimativa desta variável. Em relação aos índices climáticos, é observada pouca mudança do CDD para o verão, e um aumento para o inverno, principalmente do interior do estado, enquanto o R95p mostra sinal oposto ao CDD. O HWD apresenta uma diminuição em DJF no interior e um aumento na região litorânea para JJA. O interior de São Paulo é identificado como a região mais suscetível aos dias secos consecutivos e extremos chuvosos, enquanto as ondas de calor apresentam um sinal de aumento mais relevante no sul e faixa leste do estado, durante o inverno. |
id |
UFRJ-21_4b5efdbbbddb7cc04df4f98a30fa2e2e |
---|---|
oai_identifier_str |
oai:www.revistas.ufrj.br:article/39850 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4Estado de São Paulo; Extremos climáticos; Mudanças climáticasEste trabalho teve como objetivo avaliar mudanças nos valores de precipitação e temperatura médios sobre o estado de São Paulo (Brasil) e em três índices de extremos climáticos (dias secos consecutivos – CDD, extremos chuvosos – R95p e duração de ondas de calor – HWD), entre o período presente e o final do século XXI, a partir de um modelo climático regional. Foram utilizadas três simulações/projeções do Regional Climate Model (RegCM4) para o clima presente (1995-2014) e futuro (2080-2100), e a análise foi dividida nas estações de verão (DJF) e inverno (JJA). As simulações consideram o cenário mais pessimista de concentração de gases de efeito estufa na atmosfera do IPCC (RCP8.5). Dados observados do Climate Prediction Center (CPC) são utilizados para analisar a destreza das simulações no clima presente da precipitação e da temperatura do ar. No verão, as simulações superestimam a precipitação no litoral, enquanto no inverno a representam mais próxima do observado. Para a temperatura do ar, há subestimativas no litoral sul para ambas as estações do ano. No interior do estado, as temperaturas simuladas no verão são próximas ao observado, já no inverno observa-se superestimativa desta variável. Em relação aos índices climáticos, é observada pouca mudança do CDD para o verão, e um aumento para o inverno, principalmente do interior do estado, enquanto o R95p mostra sinal oposto ao CDD. O HWD apresenta uma diminuição em DJF no interior e um aumento na região litorânea para JJA. O interior de São Paulo é identificado como a região mais suscetível aos dias secos consecutivos e extremos chuvosos, enquanto as ondas de calor apresentam um sinal de aumento mais relevante no sul e faixa leste do estado, durante o inverno.Universidade Federal do Rio de JaneiroGodoy, Renan Muinos Parrode deGozzo, Luiz FelippeLlopart, MartaPeron, Bruna LuizaReboita, Michelle SimõesRepinaldo, Henrique Fuchs BuenoMarrafon, Vitor Hugo de Almeida2021-05-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3985010.11137/1982-3908_2021_44_39850Anuário do Instituto de Geociências; Vol 44 (2021)Anuário do Instituto de Geociências; Vol 44 (2021)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJporhttps://revistas.ufrj.br/index.php/aigeo/article/view/39850/pdf_1https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39850/13979/*ref*/Ambrizzi, T., Reboita, M.S., da Rocha, R.P. & Llopart, M. 2019, ‘The State of The Art and Fundamental Aspects of Regional Climate Modeling in South America’, Annals of The New York Academy of Sciences, vol. 1436, no. 1, pp. 98-120. https://doi.org/10.1111/nyas.13932 Arrhenius, S. 1897, ‘On the Influence of Carbonic Acid in The Air Upon the Temperature of The Ground’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 251, pp. 237-276. https://doi.org/10.1080/14786449608620846 Ashfaq, M., Cavazos, T., Reboita, M.S., Torres-Alavez, J.A., Im, E.S., Olusegun, C.F., Alves, L., Key, K., Adeniyi, M.O., Tall, M., Sylla, M.B., Mehmood, S., Zafar, Q., Das, S., Diallo, I., Coppola, E. & Giorgi, F. 2020, ‘Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations’, Climate Dynamics. https://doi.org/10.1007/s00382-020-05306-2 Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I.A., Hoose, C. & Kristjansson, J.E. 2013, ‘The Norwegian Earth System Model, Noresm1-M—Part 1: Description and Basic Evaluation of The Physical Climate’, Geoscientific Model Development, vol. 6, no.3, pp. 687-720. https://doi.org/10.5194/gmd-6-687-2013 Blázquez, J. & Silvina, A.S. 2020, ‘Multiscale Precipitation Variability and Extremes Over South America: Analysis of Future Changes from a Set of Cordex Regional Climate Model Simulations’, Climate Dynamics, vol. 55, no.7, pp. 2089-2106. https://doi.org/10.1007/s00382-020-05370-8 Bozkurt, D., Rojas, M., Boisier, J.P., Rondanelli, R., Garreaud, R. & Gallardo, L. 2019, ‘Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis’, Climate Dynamics, vol. 53, no.11, pp. 6745-6767. https://doi.org/10.1007/s00382-019-04959-y Carvalho, L.M.V., Jones, C. & Liebmann, B. 2002, ‘Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic Convergence Zone’, Journal of Climate, vol. 15, no. 17, pp. 2377-2394. https://doi.org/10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO,2 Cavalcanti, I.F.A. & Shimizu, M.H. 2012, ‘Climate Fields over South America and Variability of SACZ and PSA in Hadgem2-ES’, American Journal of Climate Change, vol. 01, no. 03, pp. 132-144. https://doi.org/10.4236/ajcc.2012.13011 Chen, M., Shi, W., Xie, P., Silva, V.B., Kousky, V.E., Wayne Higgins, R. & Janowiak, J.E. 2008, ‘Assessing Objective Techniques for Gauge‐Based Analyses of Global Daily Precipitation’, Journal of Geophysical Research: Atmospheres, vol. 113, no. D4, pp. 4110. https://doi.org/10.1029/2007JD009132 Coelho, C.A.S, Oliveira, C.P., Ambrizzi, T., Reboita, M.S., Carpenedo, C.B., Campos, J.L.P.S, Tomaziello, A.C.N., Pampuch, L.A., Custodio, M.S., Dutra, L.M., da Rocha, R.P. & Rehbein, A. 2016, ‘The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections’, Climate Dynamics, vol. 46, no. 11, pp. 3737-3752. https://doi.org/10.1007/s00382-015-2800-1. Coppola, E., Giorgi, F., Raffaele, F., Fuentes-Franco, R., Giuliani, G., Llopart, M., Mamgain, A., Mariotti, L., Diro, G.T. & Torma, C. 2014, ‘Present and Future Climatologies in the Phase I Crema Experiment’, Climatic Change, vol. 125, no. 1, pp. 23-38. https://doi.org/10.1007/s10584-014-1137-9 Dereczynski, C., Chou, S.C., Lyra, A., Sondermann, M., Regoto, P., Tavares, P., Chagas, D., Gomes, J.L., Rodrigues, D.C. & Skansi, M.M. 2020, ‘Downscaling of climate extremes over South America–Part I: Model evaluation in the reference climate’, Weather and Climate Extremes, vol. 29, pp. 100273. https://doi.org/10.1016/j.wace.2020.100273 Dereczynski, C., Silva, W.L. & Marengo, J. 2013, ‘Detection and Projections of Climate Change in Rio de Janeiro, Brazil’, American Journal of Climate Change, vol. 2, pp. 25-33. https://doi.org/10.4236/ajcc.2013.21003 Dunn, R.J., Alexander, L.V., Donat, M.G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T., Wan Ibadullah, W., Bin Ibrahim, M., Khoshkam, M., Kruger, A., Kubota, H., Leng, T., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R. & Yussof, M. 2020, ‘Development of An Updated Global Land in Situ‐Based Data Set of Temperature and Precipitation Extremes: Hadex3’, Journal of Geophysical Research: Atmospheres, vol. 125, no. 16, pp. e2019JD032263. https://doi.org/10.1029/2019JD032263 Escobar, G.C.J., Reboita, M.S. & Souza, A. 2019, ‘Climatology of Surface Baroclinic Zones in The Coast of Brazil’, Atmósfera, vol. 32, no. 2, pp. 129-141. https://doi.org/10.20937/atm.2019.32.02.04 Farinosi, F., Dosio, A., Calliari, E., Seliger, R., Alfieri, L. & Naumann, G. 2020, ‘Will the Paris Agreement Protect us from Hydro-Meteorological Extremes?’, Environmental Research Letters, vol. 15, no. 10, pp. 104037. https://doi.org/10.1088/1748-9326/aba869 Feron, S., Cordero, R.R., Damiani, A., Llanillo, P.J., Jorquera, J., Sepulveda, E., Asencio, V., Laroze, D., Labbe F., Carrasco, J. & Torres, G. 2019, ‘Observations and Projections of Heat Waves in South America’, Scientific reports, vol. 9, no. 1, pp. 1-15. https://doi.org/10.1038/s41598-019-44614-4 Garreaud, R.D., Vuille, M., Compagnucci, R. & Marengo, J. 2009, ‘Present-Day South American Climate’, Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 281, no. 3-4, pp. 180-195. https://doi.org/10.1016/j.palaeo.2007.10.032 Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Müller, W., Notz, D., Raddatz, T., Rast, S., Roeckner, E., Salzmann, M., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Wegner, J., Widmann, H., Wieners, K., Claussen, M., Marotzke, J. & Stevens, B. 2012, ‘CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: the RCP8.5 experiment, served by ESGF’, World Data Center for Climate. https://doi.org/10.1594/WDCC/CMIP5.MXELr8 Giorgi, F. 2019, ‘Thirty years of regional climate modeling: where are we and where are we going next?’, Journal of Geophysical Research: Atmospheres, vol. 124, no. 11, pp. 5696-5723. https://doi.org/10.1029/2018JD030094 Giorgi, F., Coppola, E., Raffaele, F., Diro, G.T., Fuentes-Franco, R., Giuliani, G., Mamgain A., Llopart, M.P., Mariotti, L. & Torma, C. 2014, ‘Changes in Extremes and Hydroclimatic Regimes in the Crema Ensemble Projections’, Climatic Change, vol. 125, no. 1, pp. 39-51. https://doi.org/10.1007/s10584-014-1117-0 Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M.B., Bi, X., Elguindi, N., Diro, G.T., Nair, V., Giuliani, G., Turuncoglu, U.U., Cozzini, S., Guttler, I., O’Brien, T.A., Tawfik, A.B., Shalaby, A., Zakey, A.S., Steiner, A.L., Stordal, F., Sloan, L.C. & Brankovic, C. 2012, ‘Regcm4: Model Description and Preliminary Tests Over Multiple Cordex Domains’, Climate Research, vol. 52, pp. 7-29. https://doi.org/10.3354/cr01018 Giorgi, F., Jones, C. & Asrar, G.R. 2009, ‘Addressing Climate Information Needs at The Regional Level: The CORDEX Framework’, World Meteorological Organization (WMO) Bulletin, vol. 58, no. 3, pp. 175-183. Giorgi, F. & Mearns, L.O. 1999, ‘Introduction to special section: Regional climate modeling revisited’, Journal of Geophysical Research: Atmospheres, vol. 104, no. D6, pp. 6335-6352. https://doi.org/10.1029/98JD02072 Gozzo, L.F., Palma, D.S., Custodio, M.S. & Machado, J.P. 2019, ‘Climatology and Trend of Severe Drought Events in the State of Sao Paulo, Brazil, During the 20th Century’, Atmosphere, vol. 10, no. 4, pp. 190. https://doi.org/10.3390/atmos10040190 Gutowski, W.J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.S., Raghavan, K, Lee, B., Lennard, C., Nikulin, G., O’Rourke, E., Rixen, M., Solman, S.A., Stephenson, T. & Tangang, F. 2016, ‘WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6’ Geoscientific Model Development, vol. 9, no. 11, pp. 4087-4095. https://doi.org/10.5194/gmd-9-4087-2016 Hong, S.Y. & Kanamitsu, M. 2014, ‘Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations’, Asia-Pacific Journal of Atmospheric Sciences, vol. 50, no. 1, pp. 83-104. https://doi.org/10.1007/s13143-014-0029-2 Instituto Brasileiro de Geografia e Estatística 2010, Produto Interno Bruto, acesso em 15 de dezembro de 2020, <http://censo2010.ibge.gov.br>. Intergovernmental Panel on Climate Change 2013, Climate Change 2013: The Physical Science Basis – Working Group I, Contribution to the IPCC Fifth Assessment Report, Brussels, Belgium. Intergovernmental Panel on Climate Change 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. Jones, C.D., Hughes, J.K., Bellouin, N., Hardiman, S.C., Jones, G.S., Knight, J., Liddicoat, S., O'Connor, F.M., Andres, R.J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K.D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P.R., Hurtt, G., Ingram, W.J., Lamarque, J.-F., Law, R.M., Meinshausen, M., Osprey, S., Palin, E.J., Parsons Chini, L., Raddatz, T., Sanderson, M.G., Sellar, A.A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., & Zerroukat, M. 2011, ‘The HadGEM2-ES implementation of CMIP5 centennial simulations’, Geoscientific Model Development, vol. 04, no. 3, pp. 543-570. https://doi.org/10.5194/gmd-4-543-2011. Kain, J.S. & Fritsch, J.M. 1990, ‘A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization’, Journal of Atmospheric Sciences, vol. 47, no. 23, p.. 2784-2802. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO,2 Llopart, M., Domingues, L.M., Torma, C., Giorgi, F., da Rocha, R.P., Ambrizzi, T., Reboita, M.S., Alves, L.M., Coppola, E., Silva, M.L. & Souza, D.O. 2020, ‘Assessing Changes in The Atmospheric Water Budget as Drivers for Precipitation Change Over Two Cordex-Core Domains’, Climate Dynamics. https://doi.Org/10.1007/S00382-020-05539-1 Llopart, M., Reboita, M.S. & da Rocha, R.P. 2020, ‘Assessment of Multi-Model Climate Projections of Water Resources Over South America Cordex Domain’, Climate Dynamics, vol. 54, no. 1, pp. 99-116. https://doi.org/10.1007/s00382-019-04990-z Llopart, M., Reboita, M.S., Coppola, E., Giorgi, F., Da Rocha, R.P. & De Souza, D.O. 2018, ‘Land use change over the Amazon Forest and its impact on the local climate’, Water, vol. 10, no. 2, pp. 149. https://doi.org/10.3390/w10020149 Luiz-Silva, W., Oscar-Júnior, A.C., Cavalcanti, I.F.A. & Treistman, F. 2020, ‘An overview of precipitation climatology in Brazil: space-time variability of frequency and intensity associated with atmospheric systems’, Hydrological Sciences Journal, vol. 66, no. 2, pp. 289-308. https://doi.org/10.1080/02626667.2020.1863969 Lyra, A., Tavares, P., Chou, S.C., Sueiro, G., Dereczynski, C., Sondermann, M., Silva, A., Marengo, J. & Giarolla, A. 2018, ‘Climate Change Projections Over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model At 5-Km Resolution’, Theoretical and Applied Climatology, vol. 132, no. 1, pp. 663-682. https://doi.org/10.1007/s00704-017-2067-z Marengo, J.A. & Alves, L.M. 2005, ‘Tendências hidrológicas da bacia do rio Paraíba do Sul’, Revista Brasileira de Meteorologia, vol. 20, no. 2, pp. 215-226. Marengo, J.A., Alves, L.M., Ambrizzi, T., Young, A., Barreto, N.J. & Ramos, A.M. 2020, ‘Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review’, Annals of the New York Academy of Sciences, vol. 1472, no. 1, pp. 5-20. https://doi.org/10.1111/nyas.14307 Marengo, J.A., Liebmann, B., Grimm, A.M., Misra, V., Silva Dias, P.L., Cavalcanti, I.F.A., Carvalho, L.M.V., Berbery, E.H., Ambrizzi, T., Vera, C., Saulo, C., Nogues-Paugle, J., Zipser, E., Seth, A. & Alves, L.M. 2012, ‘Review recent developments on the South American monsoon system’, International Journal of Climatology, vol. 32, no. 1, pp. 1-21. https://doi.org/10.1002/joc.2254 Marengo, J.A., Soares, W.R., Saulo, C. & Nicolini, M. 2004, ‘Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability’, Journal of Climate, vol. 17, no. 12, pp. 2261-2280. https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO,2 Marrafon, V.H. & Reboita, M.S. 2020, ‘Características da Precipitação na América do Sul Reveladas através de Índices Climáticos’, Revista Brasileira De Climatologia, vol. 26, no. 1, pp. 663-676. http://dx.doi.org/10.5380/abclima.v26i0.72181 Meehl, G.A. & Bony, S. 2011, ‘Introduction to CMIP5’, Clivar Exchanges, vol. 16, no. 56, pp. 4- 5. Montini, T.L., Jones, C. & Carvalho, L.M. 2019, ‘The South American low‐level jet: a new climatology, variability, and changes’, Journal of Geophysical Research: Atmospheres, vol. 124, no. 3, pp. 1200-1218. https://doi.org/10.1029/2018JD029634 Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; Meehl, G.A.; Mitchell, J.F.B.; Nakicenovic, N.; Riahi, K.; Smith, S.J.; Stouffer, R.J.; Thomson, A.M.; Weyant, J.P. & Wilbanks, T.J. 2010, ‘The Next Generation of Scenarios for Climate Change Research and Assessment’, Nature, vol. 463, no. 7282, pp. 747-756. https://doi.org/10.1038/nature08823 Nunez, M.N.; Solman, S.A. & Cabré, M.F. 2009, ‘Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century’, Climate Dynamics, vol. 32, no. 7, pp. 1081-1095. https://doi.org/10.1007/s00382-008-0449-8 Oleson, K.W., Lawrence, D.M., Bonan, G.B., Drewniak, B., Huang, M., Koven, C.D., Levis, S., Li, F., Riley, W.J., Subin, Z.M., Swenson, S.C., Thornton, P.E., Bozbiyik, A., Fisher, R.A., Heald, C.L., Kluzek, E., Lamarque, J.F., Lawrence, P.J., Leung, L.R., Lipscomb, W., Muszala, S., Ricciuto, D.M., Sacks, W.J., Sun, Y., Tang, J., & Yang, Z.L. 2013, Technical Description of Version 4.5 Of the Community Land Model (CLM), NCAR Technical Note no. 503, National Center for Atmospheric Research, Boulder, Colorado. https://doi.org/10.5065/D6RR1W7M Oliveira Silva, M.C. & Valverde, M.C. 2017, ‘Cenário futuro da disponibilidade hídrica na bacia do Alto Tietê’ Brazilian Journal of Environmental Sciences (Online), vol. 43, pp. 114-130. https://doi.org/10.5327/Z2176-947820170185 Önol, B. 2012, ‘Effects of coastal topography on climate: high-resolution simulation with a regional climate model’, Climate Research, 52, pp. 159-174. https://doi.org/10.3354/cr01077 Peron, B., Llopart, M. & Reboita, M. 2016, ‘Classificação Climática De Koppen-Geiger através de Simulações e Projeções Climáticas Para Bauru-SP’, Artigo apresentado no XIX Congresso Brasileiro de Meteorologia, João Pessoa, 7-11 Novembro. Reboita, M.S., Gan, M.A., da Rocha, R.P. & Ambrizzi, T. 2010, ‘Regimes De Precipitação na América do Sul: Uma Revisão Bibliográfica’, Revista Brasileira de Meteorologia, vol. 25, no. 2, pp. 185-204. http://dx.doi.org/10.1590/S0102-77862010000200004 Reboita, M.S., Marietto, D.M.G., Souza, A. & Barbosa, M. 2017, ‘Caracterização atmosférica quando da ocorrência de eventos extremos de chuva na região sul de Minas Gerais’, Revista Brasileira de Climatologia, vol. 21, pp. 20-37. http://dx.doi.org/10.5380/abclima.v21i0.47577 Reboita, M.S., Reale, M., da Rocha, R.P., Giorgi, F., Giuliani, G., Coppola, E., Nino, R., Llopart, M., Torres, J.A. & Cavazos, T. 2020, ‘Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach’, Climate Dynamics. https://doi.org/10.1007/s00382-020-05317-z Santos, D.F. & Reboita, M.S. 2018, ‘Jatos de baixos níveis a leste dos Andes: comparação entre duas reanálises’, Revista Brasileira de Climatologia, vol. 22, pp. 423-445. http://dx.doi.org/10.5380/abclima.v22i0.47595 Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Reichstein, M. Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Alexander, L.V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., Hemer, M., Huggel, C., van den Hurk, B., Kharin, V.V., Kitoh, A., Klein Tank, A.M.G., Li, G., Mason, S.J., McGuire, W., van Oldenborgh, G., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T. & Zwiers, F.W. 2012, ‘Changes in climate extremes and their impacts on the natural physical environment’ in C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor & P.M. Midgley (eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, pp. 109-230. https://doi.org/10.7916/d8-6nbt-s431 Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X. & Bronaugh, D. 2013, ‘Climate Extremes Indices in The CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in The Present Climate’, Journal of Geophysical Research: Atmospheres, vol. 118, n. 4, pp. 1716-1733. https://doi.org/10.1002/jgrd.50203 Silva, P.E., Santos e Silva, C.M., Spyrides, M.H.C. & Andrade, L.D.M.B. 2019, ‘Precipitation and air temperature extremes in the Amazon and northeast Brazil’, International Journal of Climatology, vol. 39, no. 2, pp. 579-595. https://doi.org/10.1002/joc.5829 Tiedtke, M. 1996, ‘An Extension of Cloud-Radiation Parameterization in The ECMWF Model: The Representation of Subgrid-Scale Variations of Optical Depth’, Monthly Weather Review, vol. 124, no. 4, pp. 745-750. https://doi.org/10.1175/1520-0493(1996)124<0745:AEOCRP>2.0.CO,2 Trenberth, K.E., Fasullo, J.T. & Shepherd, T.G. 2015, ‘Attribution of Climate Extreme Events’, Nature Climate Change, vol. 5, no. 8, pp. 725-730. https://doi.org/10.1038/nclimate2657 Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Matsui, T., Hurtt, G., Lamarque, J.F., Meinshausen, M., Smith, S., Grainer, C., Rose, S., Hibbard, K.A., Nakicenovic, N., Krey, V. & Kram, T. 2011, ‘The representative concentration pathways: an overview’, Climatic Change, vol. 109, no. 1, pp. 5-31. https://doi.org/10.1007/s10584-011-0148-z Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C.R. & Nogues-Paegle, J. 2006, ‘Toward A Unified View of The American Monsoon Systems’, Journal of Climate, vol. 19, no. 20, pp. 4977-5000. https://doi.org/10.1175/JCLI3896.1 Wilks, D.S. 2006, Statistical methods in the atmospheric sciences, Academic Press, San Diego. Zhou, J. & Lau, K.M. 1998, ‘Does a monsoon climate exist over South America?’, Journal of climate, vol. 11, no. 5, pp. 1020-1040. https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO,2 Zilli, M.T., Carvalho, L.M., Liebmann, B. & Silva, M.A. 2017, ‘A Comprehensive Analysis of Trends in Extreme Precipitation Over Southeastern Coast of Brazil’, International Journal of Climatology, vol. 37, no. 5, pp. 2269-2279. https://doi.org/10.1002/joc.4840Copyright (c) 2021 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-06-10T20:44:21Zoai:www.revistas.ufrj.br:article/39850Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-06-10T20:44:21Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
title |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
spellingShingle |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 Godoy, Renan Muinos Parrode de Estado de São Paulo; Extremos climáticos; Mudanças climáticas |
title_short |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
title_full |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
title_fullStr |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
title_full_unstemmed |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
title_sort |
Projeções Climáticas de Temperatura do Ar e Precipitação para o Estado de São Paulo Utilizando o Modelo Regional RegCM4 |
author |
Godoy, Renan Muinos Parrode de |
author_facet |
Godoy, Renan Muinos Parrode de Gozzo, Luiz Felippe Llopart, Marta Peron, Bruna Luiza Reboita, Michelle Simões Repinaldo, Henrique Fuchs Bueno Marrafon, Vitor Hugo de Almeida |
author_role |
author |
author2 |
Gozzo, Luiz Felippe Llopart, Marta Peron, Bruna Luiza Reboita, Michelle Simões Repinaldo, Henrique Fuchs Bueno Marrafon, Vitor Hugo de Almeida |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Godoy, Renan Muinos Parrode de Gozzo, Luiz Felippe Llopart, Marta Peron, Bruna Luiza Reboita, Michelle Simões Repinaldo, Henrique Fuchs Bueno Marrafon, Vitor Hugo de Almeida |
dc.subject.por.fl_str_mv |
Estado de São Paulo; Extremos climáticos; Mudanças climáticas |
topic |
Estado de São Paulo; Extremos climáticos; Mudanças climáticas |
description |
Este trabalho teve como objetivo avaliar mudanças nos valores de precipitação e temperatura médios sobre o estado de São Paulo (Brasil) e em três índices de extremos climáticos (dias secos consecutivos – CDD, extremos chuvosos – R95p e duração de ondas de calor – HWD), entre o período presente e o final do século XXI, a partir de um modelo climático regional. Foram utilizadas três simulações/projeções do Regional Climate Model (RegCM4) para o clima presente (1995-2014) e futuro (2080-2100), e a análise foi dividida nas estações de verão (DJF) e inverno (JJA). As simulações consideram o cenário mais pessimista de concentração de gases de efeito estufa na atmosfera do IPCC (RCP8.5). Dados observados do Climate Prediction Center (CPC) são utilizados para analisar a destreza das simulações no clima presente da precipitação e da temperatura do ar. No verão, as simulações superestimam a precipitação no litoral, enquanto no inverno a representam mais próxima do observado. Para a temperatura do ar, há subestimativas no litoral sul para ambas as estações do ano. No interior do estado, as temperaturas simuladas no verão são próximas ao observado, já no inverno observa-se superestimativa desta variável. Em relação aos índices climáticos, é observada pouca mudança do CDD para o verão, e um aumento para o inverno, principalmente do interior do estado, enquanto o R95p mostra sinal oposto ao CDD. O HWD apresenta uma diminuição em DJF no interior e um aumento na região litorânea para JJA. O interior de São Paulo é identificado como a região mais suscetível aos dias secos consecutivos e extremos chuvosos, enquanto as ondas de calor apresentam um sinal de aumento mais relevante no sul e faixa leste do estado, durante o inverno. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-28 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/39850 10.11137/1982-3908_2021_44_39850 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/39850 |
identifier_str_mv |
10.11137/1982-3908_2021_44_39850 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/39850/pdf_1 https://revistas.ufrj.br/index.php/aigeo/article/downloadSuppFile/39850/13979 /*ref*/Ambrizzi, T., Reboita, M.S., da Rocha, R.P. & Llopart, M. 2019, ‘The State of The Art and Fundamental Aspects of Regional Climate Modeling in South America’, Annals of The New York Academy of Sciences, vol. 1436, no. 1, pp. 98-120. https://doi.org/10.1111/nyas.13932 Arrhenius, S. 1897, ‘On the Influence of Carbonic Acid in The Air Upon the Temperature of The Ground’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 251, pp. 237-276. https://doi.org/10.1080/14786449608620846 Ashfaq, M., Cavazos, T., Reboita, M.S., Torres-Alavez, J.A., Im, E.S., Olusegun, C.F., Alves, L., Key, K., Adeniyi, M.O., Tall, M., Sylla, M.B., Mehmood, S., Zafar, Q., Das, S., Diallo, I., Coppola, E. & Giorgi, F. 2020, ‘Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations’, Climate Dynamics. https://doi.org/10.1007/s00382-020-05306-2 Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I.A., Hoose, C. & Kristjansson, J.E. 2013, ‘The Norwegian Earth System Model, Noresm1-M—Part 1: Description and Basic Evaluation of The Physical Climate’, Geoscientific Model Development, vol. 6, no.3, pp. 687-720. https://doi.org/10.5194/gmd-6-687-2013 Blázquez, J. & Silvina, A.S. 2020, ‘Multiscale Precipitation Variability and Extremes Over South America: Analysis of Future Changes from a Set of Cordex Regional Climate Model Simulations’, Climate Dynamics, vol. 55, no.7, pp. 2089-2106. https://doi.org/10.1007/s00382-020-05370-8 Bozkurt, D., Rojas, M., Boisier, J.P., Rondanelli, R., Garreaud, R. & Gallardo, L. 2019, ‘Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis’, Climate Dynamics, vol. 53, no.11, pp. 6745-6767. https://doi.org/10.1007/s00382-019-04959-y Carvalho, L.M.V., Jones, C. & Liebmann, B. 2002, ‘Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic Convergence Zone’, Journal of Climate, vol. 15, no. 17, pp. 2377-2394. https://doi.org/10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO,2 Cavalcanti, I.F.A. & Shimizu, M.H. 2012, ‘Climate Fields over South America and Variability of SACZ and PSA in Hadgem2-ES’, American Journal of Climate Change, vol. 01, no. 03, pp. 132-144. https://doi.org/10.4236/ajcc.2012.13011 Chen, M., Shi, W., Xie, P., Silva, V.B., Kousky, V.E., Wayne Higgins, R. & Janowiak, J.E. 2008, ‘Assessing Objective Techniques for Gauge‐Based Analyses of Global Daily Precipitation’, Journal of Geophysical Research: Atmospheres, vol. 113, no. D4, pp. 4110. https://doi.org/10.1029/2007JD009132 Coelho, C.A.S, Oliveira, C.P., Ambrizzi, T., Reboita, M.S., Carpenedo, C.B., Campos, J.L.P.S, Tomaziello, A.C.N., Pampuch, L.A., Custodio, M.S., Dutra, L.M., da Rocha, R.P. & Rehbein, A. 2016, ‘The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections’, Climate Dynamics, vol. 46, no. 11, pp. 3737-3752. https://doi.org/10.1007/s00382-015-2800-1. Coppola, E., Giorgi, F., Raffaele, F., Fuentes-Franco, R., Giuliani, G., Llopart, M., Mamgain, A., Mariotti, L., Diro, G.T. & Torma, C. 2014, ‘Present and Future Climatologies in the Phase I Crema Experiment’, Climatic Change, vol. 125, no. 1, pp. 23-38. https://doi.org/10.1007/s10584-014-1137-9 Dereczynski, C., Chou, S.C., Lyra, A., Sondermann, M., Regoto, P., Tavares, P., Chagas, D., Gomes, J.L., Rodrigues, D.C. & Skansi, M.M. 2020, ‘Downscaling of climate extremes over South America–Part I: Model evaluation in the reference climate’, Weather and Climate Extremes, vol. 29, pp. 100273. https://doi.org/10.1016/j.wace.2020.100273 Dereczynski, C., Silva, W.L. & Marengo, J. 2013, ‘Detection and Projections of Climate Change in Rio de Janeiro, Brazil’, American Journal of Climate Change, vol. 2, pp. 25-33. https://doi.org/10.4236/ajcc.2013.21003 Dunn, R.J., Alexander, L.V., Donat, M.G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A., Brunet, M., Caesar, J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T., Wan Ibadullah, W., Bin Ibrahim, M., Khoshkam, M., Kruger, A., Kubota, H., Leng, T., Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J., Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., Vischel, T., Vose, R. & Yussof, M. 2020, ‘Development of An Updated Global Land in Situ‐Based Data Set of Temperature and Precipitation Extremes: Hadex3’, Journal of Geophysical Research: Atmospheres, vol. 125, no. 16, pp. e2019JD032263. https://doi.org/10.1029/2019JD032263 Escobar, G.C.J., Reboita, M.S. & Souza, A. 2019, ‘Climatology of Surface Baroclinic Zones in The Coast of Brazil’, Atmósfera, vol. 32, no. 2, pp. 129-141. https://doi.org/10.20937/atm.2019.32.02.04 Farinosi, F., Dosio, A., Calliari, E., Seliger, R., Alfieri, L. & Naumann, G. 2020, ‘Will the Paris Agreement Protect us from Hydro-Meteorological Extremes?’, Environmental Research Letters, vol. 15, no. 10, pp. 104037. https://doi.org/10.1088/1748-9326/aba869 Feron, S., Cordero, R.R., Damiani, A., Llanillo, P.J., Jorquera, J., Sepulveda, E., Asencio, V., Laroze, D., Labbe F., Carrasco, J. & Torres, G. 2019, ‘Observations and Projections of Heat Waves in South America’, Scientific reports, vol. 9, no. 1, pp. 1-15. https://doi.org/10.1038/s41598-019-44614-4 Garreaud, R.D., Vuille, M., Compagnucci, R. & Marengo, J. 2009, ‘Present-Day South American Climate’, Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 281, no. 3-4, pp. 180-195. https://doi.org/10.1016/j.palaeo.2007.10.032 Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Müller, W., Notz, D., Raddatz, T., Rast, S., Roeckner, E., Salzmann, M., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Wegner, J., Widmann, H., Wieners, K., Claussen, M., Marotzke, J. & Stevens, B. 2012, ‘CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: the RCP8.5 experiment, served by ESGF’, World Data Center for Climate. https://doi.org/10.1594/WDCC/CMIP5.MXELr8 Giorgi, F. 2019, ‘Thirty years of regional climate modeling: where are we and where are we going next?’, Journal of Geophysical Research: Atmospheres, vol. 124, no. 11, pp. 5696-5723. https://doi.org/10.1029/2018JD030094 Giorgi, F., Coppola, E., Raffaele, F., Diro, G.T., Fuentes-Franco, R., Giuliani, G., Mamgain A., Llopart, M.P., Mariotti, L. & Torma, C. 2014, ‘Changes in Extremes and Hydroclimatic Regimes in the Crema Ensemble Projections’, Climatic Change, vol. 125, no. 1, pp. 39-51. https://doi.org/10.1007/s10584-014-1117-0 Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M.B., Bi, X., Elguindi, N., Diro, G.T., Nair, V., Giuliani, G., Turuncoglu, U.U., Cozzini, S., Guttler, I., O’Brien, T.A., Tawfik, A.B., Shalaby, A., Zakey, A.S., Steiner, A.L., Stordal, F., Sloan, L.C. & Brankovic, C. 2012, ‘Regcm4: Model Description and Preliminary Tests Over Multiple Cordex Domains’, Climate Research, vol. 52, pp. 7-29. https://doi.org/10.3354/cr01018 Giorgi, F., Jones, C. & Asrar, G.R. 2009, ‘Addressing Climate Information Needs at The Regional Level: The CORDEX Framework’, World Meteorological Organization (WMO) Bulletin, vol. 58, no. 3, pp. 175-183. Giorgi, F. & Mearns, L.O. 1999, ‘Introduction to special section: Regional climate modeling revisited’, Journal of Geophysical Research: Atmospheres, vol. 104, no. D6, pp. 6335-6352. https://doi.org/10.1029/98JD02072 Gozzo, L.F., Palma, D.S., Custodio, M.S. & Machado, J.P. 2019, ‘Climatology and Trend of Severe Drought Events in the State of Sao Paulo, Brazil, During the 20th Century’, Atmosphere, vol. 10, no. 4, pp. 190. https://doi.org/10.3390/atmos10040190 Gutowski, W.J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.S., Raghavan, K, Lee, B., Lennard, C., Nikulin, G., O’Rourke, E., Rixen, M., Solman, S.A., Stephenson, T. & Tangang, F. 2016, ‘WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6’ Geoscientific Model Development, vol. 9, no. 11, pp. 4087-4095. https://doi.org/10.5194/gmd-9-4087-2016 Hong, S.Y. & Kanamitsu, M. 2014, ‘Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations’, Asia-Pacific Journal of Atmospheric Sciences, vol. 50, no. 1, pp. 83-104. https://doi.org/10.1007/s13143-014-0029-2 Instituto Brasileiro de Geografia e Estatística 2010, Produto Interno Bruto, acesso em 15 de dezembro de 2020, <http://censo2010.ibge.gov.br>. Intergovernmental Panel on Climate Change 2013, Climate Change 2013: The Physical Science Basis – Working Group I, Contribution to the IPCC Fifth Assessment Report, Brussels, Belgium. Intergovernmental Panel on Climate Change 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. Jones, C.D., Hughes, J.K., Bellouin, N., Hardiman, S.C., Jones, G.S., Knight, J., Liddicoat, S., O'Connor, F.M., Andres, R.J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K.D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P.R., Hurtt, G., Ingram, W.J., Lamarque, J.-F., Law, R.M., Meinshausen, M., Osprey, S., Palin, E.J., Parsons Chini, L., Raddatz, T., Sanderson, M.G., Sellar, A.A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., & Zerroukat, M. 2011, ‘The HadGEM2-ES implementation of CMIP5 centennial simulations’, Geoscientific Model Development, vol. 04, no. 3, pp. 543-570. https://doi.org/10.5194/gmd-4-543-2011. Kain, J.S. & Fritsch, J.M. 1990, ‘A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization’, Journal of Atmospheric Sciences, vol. 47, no. 23, p.. 2784-2802. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO,2 Llopart, M., Domingues, L.M., Torma, C., Giorgi, F., da Rocha, R.P., Ambrizzi, T., Reboita, M.S., Alves, L.M., Coppola, E., Silva, M.L. & Souza, D.O. 2020, ‘Assessing Changes in The Atmospheric Water Budget as Drivers for Precipitation Change Over Two Cordex-Core Domains’, Climate Dynamics. https://doi.Org/10.1007/S00382-020-05539-1 Llopart, M., Reboita, M.S. & da Rocha, R.P. 2020, ‘Assessment of Multi-Model Climate Projections of Water Resources Over South America Cordex Domain’, Climate Dynamics, vol. 54, no. 1, pp. 99-116. https://doi.org/10.1007/s00382-019-04990-z Llopart, M., Reboita, M.S., Coppola, E., Giorgi, F., Da Rocha, R.P. & De Souza, D.O. 2018, ‘Land use change over the Amazon Forest and its impact on the local climate’, Water, vol. 10, no. 2, pp. 149. https://doi.org/10.3390/w10020149 Luiz-Silva, W., Oscar-Júnior, A.C., Cavalcanti, I.F.A. & Treistman, F. 2020, ‘An overview of precipitation climatology in Brazil: space-time variability of frequency and intensity associated with atmospheric systems’, Hydrological Sciences Journal, vol. 66, no. 2, pp. 289-308. https://doi.org/10.1080/02626667.2020.1863969 Lyra, A., Tavares, P., Chou, S.C., Sueiro, G., Dereczynski, C., Sondermann, M., Silva, A., Marengo, J. & Giarolla, A. 2018, ‘Climate Change Projections Over Three Metropolitan Regions in Southeast Brazil Using the Non-Hydrostatic Eta Regional Climate Model At 5-Km Resolution’, Theoretical and Applied Climatology, vol. 132, no. 1, pp. 663-682. https://doi.org/10.1007/s00704-017-2067-z Marengo, J.A. & Alves, L.M. 2005, ‘Tendências hidrológicas da bacia do rio Paraíba do Sul’, Revista Brasileira de Meteorologia, vol. 20, no. 2, pp. 215-226. Marengo, J.A., Alves, L.M., Ambrizzi, T., Young, A., Barreto, N.J. & Ramos, A.M. 2020, ‘Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review’, Annals of the New York Academy of Sciences, vol. 1472, no. 1, pp. 5-20. https://doi.org/10.1111/nyas.14307 Marengo, J.A., Liebmann, B., Grimm, A.M., Misra, V., Silva Dias, P.L., Cavalcanti, I.F.A., Carvalho, L.M.V., Berbery, E.H., Ambrizzi, T., Vera, C., Saulo, C., Nogues-Paugle, J., Zipser, E., Seth, A. & Alves, L.M. 2012, ‘Review recent developments on the South American monsoon system’, International Journal of Climatology, vol. 32, no. 1, pp. 1-21. https://doi.org/10.1002/joc.2254 Marengo, J.A., Soares, W.R., Saulo, C. & Nicolini, M. 2004, ‘Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability’, Journal of Climate, vol. 17, no. 12, pp. 2261-2280. https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO,2 Marrafon, V.H. & Reboita, M.S. 2020, ‘Características da Precipitação na América do Sul Reveladas através de Índices Climáticos’, Revista Brasileira De Climatologia, vol. 26, no. 1, pp. 663-676. http://dx.doi.org/10.5380/abclima.v26i0.72181 Meehl, G.A. & Bony, S. 2011, ‘Introduction to CMIP5’, Clivar Exchanges, vol. 16, no. 56, pp. 4- 5. Montini, T.L., Jones, C. & Carvalho, L.M. 2019, ‘The South American low‐level jet: a new climatology, variability, and changes’, Journal of Geophysical Research: Atmospheres, vol. 124, no. 3, pp. 1200-1218. https://doi.org/10.1029/2018JD029634 Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; Meehl, G.A.; Mitchell, J.F.B.; Nakicenovic, N.; Riahi, K.; Smith, S.J.; Stouffer, R.J.; Thomson, A.M.; Weyant, J.P. & Wilbanks, T.J. 2010, ‘The Next Generation of Scenarios for Climate Change Research and Assessment’, Nature, vol. 463, no. 7282, pp. 747-756. https://doi.org/10.1038/nature08823 Nunez, M.N.; Solman, S.A. & Cabré, M.F. 2009, ‘Regional climate change experiments over southern South America. II: Climate change scenarios in the late twenty-first century’, Climate Dynamics, vol. 32, no. 7, pp. 1081-1095. https://doi.org/10.1007/s00382-008-0449-8 Oleson, K.W., Lawrence, D.M., Bonan, G.B., Drewniak, B., Huang, M., Koven, C.D., Levis, S., Li, F., Riley, W.J., Subin, Z.M., Swenson, S.C., Thornton, P.E., Bozbiyik, A., Fisher, R.A., Heald, C.L., Kluzek, E., Lamarque, J.F., Lawrence, P.J., Leung, L.R., Lipscomb, W., Muszala, S., Ricciuto, D.M., Sacks, W.J., Sun, Y., Tang, J., & Yang, Z.L. 2013, Technical Description of Version 4.5 Of the Community Land Model (CLM), NCAR Technical Note no. 503, National Center for Atmospheric Research, Boulder, Colorado. https://doi.org/10.5065/D6RR1W7M Oliveira Silva, M.C. & Valverde, M.C. 2017, ‘Cenário futuro da disponibilidade hídrica na bacia do Alto Tietê’ Brazilian Journal of Environmental Sciences (Online), vol. 43, pp. 114-130. https://doi.org/10.5327/Z2176-947820170185 Önol, B. 2012, ‘Effects of coastal topography on climate: high-resolution simulation with a regional climate model’, Climate Research, 52, pp. 159-174. https://doi.org/10.3354/cr01077 Peron, B., Llopart, M. & Reboita, M. 2016, ‘Classificação Climática De Koppen-Geiger através de Simulações e Projeções Climáticas Para Bauru-SP’, Artigo apresentado no XIX Congresso Brasileiro de Meteorologia, João Pessoa, 7-11 Novembro. Reboita, M.S., Gan, M.A., da Rocha, R.P. & Ambrizzi, T. 2010, ‘Regimes De Precipitação na América do Sul: Uma Revisão Bibliográfica’, Revista Brasileira de Meteorologia, vol. 25, no. 2, pp. 185-204. http://dx.doi.org/10.1590/S0102-77862010000200004 Reboita, M.S., Marietto, D.M.G., Souza, A. & Barbosa, M. 2017, ‘Caracterização atmosférica quando da ocorrência de eventos extremos de chuva na região sul de Minas Gerais’, Revista Brasileira de Climatologia, vol. 21, pp. 20-37. http://dx.doi.org/10.5380/abclima.v21i0.47577 Reboita, M.S., Reale, M., da Rocha, R.P., Giorgi, F., Giuliani, G., Coppola, E., Nino, R., Llopart, M., Torres, J.A. & Cavazos, T. 2020, ‘Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach’, Climate Dynamics. https://doi.org/10.1007/s00382-020-05317-z Santos, D.F. & Reboita, M.S. 2018, ‘Jatos de baixos níveis a leste dos Andes: comparação entre duas reanálises’, Revista Brasileira de Climatologia, vol. 22, pp. 423-445. http://dx.doi.org/10.5380/abclima.v22i0.47595 Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Reichstein, M. Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Alexander, L.V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., Hemer, M., Huggel, C., van den Hurk, B., Kharin, V.V., Kitoh, A., Klein Tank, A.M.G., Li, G., Mason, S.J., McGuire, W., van Oldenborgh, G., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T. & Zwiers, F.W. 2012, ‘Changes in climate extremes and their impacts on the natural physical environment’ in C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor & P.M. Midgley (eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, pp. 109-230. https://doi.org/10.7916/d8-6nbt-s431 Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X. & Bronaugh, D. 2013, ‘Climate Extremes Indices in The CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in The Present Climate’, Journal of Geophysical Research: Atmospheres, vol. 118, n. 4, pp. 1716-1733. https://doi.org/10.1002/jgrd.50203 Silva, P.E., Santos e Silva, C.M., Spyrides, M.H.C. & Andrade, L.D.M.B. 2019, ‘Precipitation and air temperature extremes in the Amazon and northeast Brazil’, International Journal of Climatology, vol. 39, no. 2, pp. 579-595. https://doi.org/10.1002/joc.5829 Tiedtke, M. 1996, ‘An Extension of Cloud-Radiation Parameterization in The ECMWF Model: The Representation of Subgrid-Scale Variations of Optical Depth’, Monthly Weather Review, vol. 124, no. 4, pp. 745-750. https://doi.org/10.1175/1520-0493(1996)124<0745:AEOCRP>2.0.CO,2 Trenberth, K.E., Fasullo, J.T. & Shepherd, T.G. 2015, ‘Attribution of Climate Extreme Events’, Nature Climate Change, vol. 5, no. 8, pp. 725-730. https://doi.org/10.1038/nclimate2657 Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Matsui, T., Hurtt, G., Lamarque, J.F., Meinshausen, M., Smith, S., Grainer, C., Rose, S., Hibbard, K.A., Nakicenovic, N., Krey, V. & Kram, T. 2011, ‘The representative concentration pathways: an overview’, Climatic Change, vol. 109, no. 1, pp. 5-31. https://doi.org/10.1007/s10584-011-0148-z Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., Mechoso, C.R. & Nogues-Paegle, J. 2006, ‘Toward A Unified View of The American Monsoon Systems’, Journal of Climate, vol. 19, no. 20, pp. 4977-5000. https://doi.org/10.1175/JCLI3896.1 Wilks, D.S. 2006, Statistical methods in the atmospheric sciences, Academic Press, San Diego. Zhou, J. & Lau, K.M. 1998, ‘Does a monsoon climate exist over South America?’, Journal of climate, vol. 11, no. 5, pp. 1020-1040. https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO,2 Zilli, M.T., Carvalho, L.M., Liebmann, B. & Silva, M.A. 2017, ‘A Comprehensive Analysis of Trends in Extreme Precipitation Over Southeastern Coast of Brazil’, International Journal of Climatology, vol. 37, no. 5, pp. 2269-2279. https://doi.org/10.1002/joc.4840 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; Vol 44 (2021) Anuário do Instituto de Geociências; Vol 44 (2021) 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053541753290752 |