Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/37227 |
Resumo: | The filling materials in brittle structures can provide useful information about the Cenozoic evolution developed over proterozoic terrains. When these materials are affected by faults, they record deformation phases that can be determined chronologically and, in the occurrence of lateritic materials, it is possible to infer the paleoenvironmental conditions during the mineral formation. This work aimed to identify crystalline phases of brittle structure filling materials and to propose evolutionary interpretations for Cenozoic tectonic reactivation based on literature data. The study area is located in the Southern part of the Espírito Santo State, near the Brazilian Southeastern Continental Margin, where proterozoic geological structures have been reactivated since the mesozoic rift phase, up to the Holocene. The mineral assemblage found in the filling materials includes primary minerals such as quartz, muscovite, microcline, rutile, titanite, and bannisterite; and the weathering minerals such as kaolinite, illite, hematite, goethite, hydrobiotite, lithiophorite and, birnessite. The mineralogical association found in the filling materials denotes the action of fluid phases with mineral precipitation at the brittle discontinuities during the weathering processes that occurred during the Cenozoic, probably between the Miocene and the Pleistocene. The faults, which striations are marked on the filling materials, originated after (in the case of the manganese oxides) or during (in the case of the illite) the mineral formation, indicating that the maximum age of these faults is in the Miocene. The origin of the brittle structures that affected the filling materials studied here is linked to the uplifting of the Continental Brazilian Margin, when ancient geological structures were reactivated as normal faults due to the local action of an extensional regime. |
id |
UFRJ-21_9bc6c0a2f0c28d42aa8964bdc45fd11b |
---|---|
oai_identifier_str |
oai:www.revistas.ufrj.br:article/37227 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern BrazilFilling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern BrazilBrittle Structures; Relative Dating; Cenozoic.Brittle Structures; Relative Dating; Cenozoic.The filling materials in brittle structures can provide useful information about the Cenozoic evolution developed over proterozoic terrains. When these materials are affected by faults, they record deformation phases that can be determined chronologically and, in the occurrence of lateritic materials, it is possible to infer the paleoenvironmental conditions during the mineral formation. This work aimed to identify crystalline phases of brittle structure filling materials and to propose evolutionary interpretations for Cenozoic tectonic reactivation based on literature data. The study area is located in the Southern part of the Espírito Santo State, near the Brazilian Southeastern Continental Margin, where proterozoic geological structures have been reactivated since the mesozoic rift phase, up to the Holocene. The mineral assemblage found in the filling materials includes primary minerals such as quartz, muscovite, microcline, rutile, titanite, and bannisterite; and the weathering minerals such as kaolinite, illite, hematite, goethite, hydrobiotite, lithiophorite and, birnessite. The mineralogical association found in the filling materials denotes the action of fluid phases with mineral precipitation at the brittle discontinuities during the weathering processes that occurred during the Cenozoic, probably between the Miocene and the Pleistocene. The faults, which striations are marked on the filling materials, originated after (in the case of the manganese oxides) or during (in the case of the illite) the mineral formation, indicating that the maximum age of these faults is in the Miocene. The origin of the brittle structures that affected the filling materials studied here is linked to the uplifting of the Continental Brazilian Margin, when ancient geological structures were reactivated as normal faults due to the local action of an extensional regime.The filling materials in brittle structures can provide useful information about the Cenozoic evolution developed over proterozoic terrains. When these materials are affected by faults, they record deformation phases that can be determined chronologically and, in the occurrence of lateritic materials, it is possible to infer the paleoenvironmental conditions during the mineral formation. This work aimed to identify crystalline phases of brittle structure filling materials and to propose evolutionary interpretations for Cenozoic tectonic reactivation based on literature data. The study area is located in the Southern part of the Espírito Santo State, near the Brazilian Southeastern Continental Margin, where proterozoic geological structures have been reactivated since the mesozoic rift phase, up to the Holocene. The mineral assemblage found in the filling materials includes primary minerals such as quartz, muscovite, microcline, rutile, titanite, and bannisterite; and the weathering minerals such as kaolinite, illite, hematite, goethite, hydrobiotite, lithiophorite and, birnessite. The mineralogical association found in the filling materials denotes the action of fluid phases with mineral precipitation at the brittle discontinuities during the weathering processes that occurred during the Cenozoic, probably between the Miocene and the Pleistocene. The faults, which striations are marked on the filling materials, originated after (in the case of the manganese oxides) or during (in the case of the illite) the mineral formation, indicating that the maximum age of these faults is in the Miocene. The origin of the brittle structures that affected the filling materials studied here is linked to the uplifting of the Continental Brazilian Margin, when ancient geological structures were reactivated asnormal faults due to the local action of an extensional regime.Universidade Federal do Rio de JaneiroCalegari, Salomão SilvaAiolfi, Thaís RuyNeves, Mirna AparecidaSoares, Caroline Cibele VieiraMarques, Rodson de AbreuCaxito, Fabrício de Andrade2020-08-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3722710.11137/2020_2_237_254Anuário do Instituto de Geociências; Vol 43, No 2 (2020); 237_254Anuário do Instituto de Geociências; Vol 43, No 2 (2020); 237_2541982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/37227/pdf/*ref*/Allaby, M. (ed.). 2008. Dictionary of Earth Sciences. 3ª Ed. Oxford, Oxford University Press. 661 p. Alkmim F.F.; Marsak, S.; Pedrosa-Soares, A.C.; Peres, G.G.; Cruz, S.C.P. & Whittinhgton, A. 2006. Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Research, 149 (1-2): 46-64. Almeida, F.F.M.; Hasui, Y.; Brito-Neves, B.B. & Fuck, R.A. 1981. Brazilian Structural Provinces: An Introduction. Earth-Science Reviews, 7 (1-2): 1-29. Anand, R.R. & Paine, M. 2002. Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Australian Journal of Earth Sciences, 49: 3-162. Angelier, J. & Mechler, P. 1977. Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société Géologique de France, S7-XIX (6): 1309-1318. Anthony, J.W.; Bideaux, R.A.; Bladh, K.W. & Nichols, M.C. (eds.). 2001. Handbook of Mineralogy, Mineralogical Society of America. USA. Available in: http://www. handbookofmineralogy.org. Accessed 30 ago 2016. Augustin, C.H.R.R.; Lopes, M.R.S. & Silva, S.M. 2013. Lateritas: um conceito ainda em construção. Revista Brasileira de Geomorfologia, 14 (3): 241-257. Balsamo, F.; Bezerra, F.H.R.; Vieira, M.M. & Storti, F. 2013. Structural control on the formation of iron-oxide concretions and Liesegang bands in faulted, poorly lithified Cenozoic sandstones of the Paraíba Basin, Brazil. Geological Society of America Bulletin, 125 (5-6): 913-931. Bezerra, F.H.R. & Vita-Finzi, C. 2000. How active is a passive margin? Paleoseismicity in Northeastern Brasil. Geology, 28: 591-594. Brindley, G.W. & Brown, G. 1980. Crystal Structures of Clay Minerals and Their X-ray Identification. London, Mineralogical Society. 495 p. Brito-Neves, B.B.; Campos Neto, M.C. & Fuck, R.A. 1999. From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African Cycle and orogenic collage. Episodes, 22(3): 155-166. Calegari, S.S.; Neves, M.A.; Guadagnin, F.; França, G.S. & Vincentelli, M.G.C. 2016. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil. Journal of South American Earth Sciences, 69: 226-242. Carmo, I.O. & Vasconcelos, P.M. 2004. Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surface Processes and Landforms, 29 (11): 1303-1320. Carmo, I.O. & Vasconcelos, P.M. 2006. 40Ar/39Ar geochronology constraints on late miocene weathering rates in Minas Gerais, Brazil. Earth and Planetary Science Letters, 241: 80-94. Churchman, G.J. & Lowe, D.J. 2012. Alteration, formation and occurrence of minerals in soils. In: HUANG, P.M.; LI, Y. & SUMNER, M.E. (eds.). Handbook of Soil Sciences. Properties and Processes. CRC Press, Florida, p. 20.1-20.72. Cogné, N.; Gallagher, K.; Cobbold, P.R.; Riccomini, C. & Gautheron, C. 2012. Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling. Journal of Geophysical Research, 117: 1-16. Costa, M. 1991. Aspectos geológicos dos lateritos da Amazônia. Revista Brasileira de Geociências, 21(2): 146-160. Cunningham, D.; Alkmim, F.F. & Marshak, S. 1998. A structural transect across the coastal mobile belt in the Brazilian Highlands (latitude 20°S): the roots of a Precambrian transpressional orogen. Precambrian Research, 92(3): 251-275. De Campos, C.M.; Mendes, J.C.; Ludka, I.P.; Medeiros, S.R.; Moura, J.C. & Wallfass, C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17: 1-35. De Putter, T.; Ruffet, G.; Yans, J. & Mees, F. 2015. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region. Ore Geology Reviews, 71: 350-362. Delvaux, D.; Moeys, R.; Stapel, G.; Petit, C.; Levi, K.; Miroshnichenko, A.; Ruzhich, V. & San’kov, V. 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282: 1-38. Delvaux, D. & Sperner, B. 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: NIEUWLAND, D.A. (ed.), New Insights into Structural Interpretation and Modelling, Special Publication of the Geological Society of London, 212, p. 75-100. Deng, X.D. & Li, J.W. 2013. 40Ar/39Ar dating of cryptomelane from the Baye manganese deposit, SW Yunnan, China: implications for growth rate of supergene Mn-oxide veins. Science China: Earth Sciences, 59(10): 1654-1663. Dunn, P.J.; Leavens, P.B.; Norberg, J.A. & Ramik, R.A. 1981. Bannisterite: new chemical data and empirical fomrulae. American Mineralogist, 66: 1063-1067. ERSDAC. 2013. Earth Remote Sensing Data Analysis Center (ASTER GDEM). Available in: http://gdem.ersdac. jspacesystems.or.jp. Accessed 10 set 2013. Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.; Shipton, Z.K.; Wibberley, C.A.J. & Withjack, M.O. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557-1575. Féboli, W. 1993. Programa Levantamentos Geológicos Básicos: Folha Piúma (SF. 24-V-A-VI,), Estado do Espírito Santo, escala 1:100.000. Brasília: DNPM/ CPRM, 144 p. Frohlich, C. 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75: 193-198. Fuck, R.A.; Brito-Neves, B.B. & Schobbenhaus, C. 2008. Rodinia descendants in South America. Precambrian Research, 160(1-2): 108-126. Gatto, L.C.S.; Ramos, V.L.S.; Nunes, B.T.A.; Mamede, L.; Góes, M.H.B.; Mauro, C.A.; Alvarenga, S.M.; Franco, E.M.S.; Quirico, A.F. & Neves, L.B. 1983. Geomorfologia. In: Moreira, H.F. (ed.). Projeto RADAMBRASIL - Levantamento de Recursos Naturais: Folhas SF-23/24, Rio de Janeiro/Vitória. 32, p 305-384. GEBCO. 2020. General Bathymetric Chart of the Oceans. Available in: https://www.gebco.net/data_and_ products/gridded_bathymetry_data. Accessed 25 apr 2020. GEOBASES. 2002. Sistema Integrado de Bases Geoespaciais do Estado do Espírito Santo. INCAPER. Available in: http://www.geobases.es.gov.br/. Accessed 28 ago 2016 Grohmann, C.H.; Campanha, G.A.C. & Soares Junior, A.V. OpenStereo: um programa Livre e multiplataforma para análise de dados estruturais. In: XIII SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS. Campinas, 2011. Paper, p. 26-28. Hackspacher, P.C.; Ribeiro, L.F.B.; Ribeiro, M.C.S.; Fetter, A.H.; Hadler Neto, J.C.; Tello, C.E.S. & Dantas, E.L. 2004. Consolidation and break-up of the South American Platform in Southeastern Brazil: tectonothermal and denudation histories. Gondwana Research, 7(1): 91-101. Harman, R.; Gallagher, K.; Brown, R.; Raza, A. & Bizzi, L. 1998. Accelerated denudation and tectonic/geomorphic reactivation of the cratons of Northeastern Brazil during the Late Cretaceous. Journal of Geophysical Research, 103 (B11): 27091-27105. Heilbron, M.; Pedrosa-Soares, A.C.; Neto, M.C.C.; Silva, L.C.; Trow, R.A.J. & Janasi, V.A. 2004. A Província Mantiqueira. In: MANTESSO-NETO, V.; BARTORELLI, A.; CARNEIRO, C.D.R & BRITO-NEVES, B.B. (eds.). Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Becca, p. 180-212. Horn, A.H.; Faria, B.; Gardini, G.M.; Vasconcellos, L. & Oliveira, M.R. 2007. Programa Geologia do Brasil: Folha Espera Feliz (SE24-V-A-IV), relatório final, escala 1:100.000. Belo Horizonte, UFMG/CPRM, 72 p. Jelinek, A.R.; Chemale JR.F.; Van Der Beek, P.A.; Guadagnin, F.; Cupertino, J.A. & Viana, A. 2014. Denudation history and landscape evolution of the northern East-Brazilian continental margin from apatite fission-track thermochronology. Journal of South American Earth Sciences, 54: 158-181. Karl, M.; Glasmacher, U.A.; Kollenz, S.; Franco-Magalhaes, A.O.B.; Stockli, D.F. & Hackspacher, P.C. 2013. Evolution of the South Atlantic passive continental margin in Southern Brazil derived from zircon and apatite (U–Th–Sm)/He and fission-track data. Tectonophysics, 604: 224-244. Kurz, W.; Imber, J.; Wibberley, C.A.J.; Holdsworth, R.E. & Collettini, C. 2008. The internal structure of fault zones: fluid flow and mechanical properties. In: WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.; HOLDSWORTH, R.E. & COLLETTINI, C. (eds.) The internal structure of fault zones: implications for mechanical and fluid-flow properties. The Geological Society, London, Special publication, 299, p. 1-3. Lourenço, F.S.; Alkmim, F.F.; Araújo, M.N.C.; Romeiro, M.A.T.; Matos, G.C. & Crósta, A.P. 2016. The Piúma lineament, southern Espírito Santo: structural expression and tectonic significance. Brazilian Journal of Geology, 46(4): 531-546. Meunier, A. 2005. Clays. Berlin, Springer, 406 p. Modenesi-Gauttieri, M.C.; Toledo, M.C.M; Hiruma, S.T.; Taioli, F. & Shimada, H. 2011. Deep weathering and landscape evolution in a tropical plateau. Catena, 85: 221-230. Monteiro, H.S.; Vasconcelos, P.M.; Farley, K.A.; Spier, C.A. & Mello, C.L. 2014. (U–Th)/He geochronology of goethite and the origin and evolution of cangas. Geochimica et Cosmochimica Acta, 131: 267-289. Morais Neto, J.M.; Hegarty, K.A.; Karner, G.D. & Alkmim, F.F. 2009. Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema Province, northeastern Brazil. Marine and Petroleum Geology, 26(7): 1070-1086. Noce, C.M.; Pedrosa-Soares, A.C.; Silva, L.C. & Alkmim, F.F. 2007. O embasamento arqueano e paleoproterozóico do Orógeno Araçuaí. Geonomos, 15(1): 17-23. Novo, T.A.; Noce, C.M.; Batista, G.A.P.; Quéméneur, J.J.G.; Martins, B.S.; Santos, S.W.M.; Carneiro, G.A. & Horn, A.H. 2014. Programa Geologia do Brasil: Geologia e Recursos Minerais da Folha Manhumirim (SF24-V-A-IV), Estados do Espírito Santo e Minas Gerais, escala 1:100.000, Belo Horizonte, CPRM, 77 p. Oberlin, A. & Couty, R. 1970. Conditions of kaolinite formation during alteration of some silicates by water at 200°C. Clays and Clay Minerals, 18: 347-356. Pedrosa-Soares, A.C.; Campos, C.; Noce, C.M.; Silva, L.C.; Roncato, J.; Novo, T.; Medeiros, S.; Castañeda, C.; Queiroga, G.; Dantas, E.; Dussin, I. & Alkmim, F.F. 2011. Late Neoproterozoic-Cambrian granitic magmatism in the Araçuaí Orogen, the Eastern Brazilian Pegmatite Province and related mineral resources (SE Brazil). Journal of the Geological Society of London, 350: 25-51. Pedrosa-Soares, A.C.; Alkmim, F.F.; Tack, L.; Noce, C.M; Babinski, M.; Silva, L.C. & Martins-Neto, M.A. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo Orogen. Journal of the Geological Society of London, 294: 153-172. Pedrosa-Soares, A.C.; Noce, C.M.; Alkmim, F.F.; Silva, L.C.; Babinski, M.; Cordani, U. & Castañeda, C. 2007. Orógeno Araçuaí: síntese do conhecimento 30 anos após Almeida 1977. Geonomos, 15(1): 1-16. Pedrosa-Soares, A.C.; Noce, C.M.; Wiedemann, C.M. & Pinto, C.P. 2001. The Araçuaí-West-Congo Orogen in Brazil: an overview of a confined orogen formed during Gondwanaland assembly. Precambrian Research, 110(1-4): 307-323. Pedrosa-Soares, A.C. & Wiedemann-Leonardos, C.M. 2000. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: CORDANI U.G.; MILANI, E.J.; TOMAZ FILHO, A. & CAMPOS, D.A. (eds.). Tectonic Evolution of South America. São Paulo, Sociedade Brasileira de Geologia, p. 265-285. Riccomini, C.; Peloggia, A.U.G.; Saloni, J.C.L.; Kohnke, M.W. & Figueira, R.M. 1989. Neotectonic activity in the Serra do Mar rift system (southeastern Brazil). Journal of South America Earth Sciences, 2(2): 191-197. Righi, D & Meunier, A. 1995. Origin of Clays by Rock Weathering and Soil Formation. In: VELDE, B. (ed.) Origin and mineralogy of clays. Clays and the environment. Springer, Berlin, p. 43-161. Romano, A.W. & Castañeda, C. 2006. A tectônica distensiva pós-mesozoica no condicionamento dos depósitos de bauxita da mata mineira. Geonomos, 14(1-2): 1-5. Ross, J. 2011. Relevo brasileiro: uma nova proposta de classificação. Revista do Departamento de Geografia, 4: 25-39. Salvador, E.D. & Riccomini, C. 1995. Neotectônica da região do alto estrutural de Queluz (SP-RJ, Brasil). Revista Brasileira de Geociências, 25(3): 151-164. Santos, M. & Ladeira, F.S.B. 2006. Tectonismo em perfis de alteração da Serra de Itaqueri (SP): Análise através de indicadores cinemáticos de falhas. Geociências, 25(1): 135-149. Scheinost, A.C. 2004. Metal Oxides. In: HILLEL, D (ed.). Encyclopedia of Soils in the Environment. Elsevier, 2, p. 428-438. Shuster, D.L.; Farley, K.A.; Vasconcelos, P.M.; Balco, G.; Monteiro, H.S.; Waltenberg, K. & Stone, J.O. 2012. Cosmogenic 3 He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth and Planetary Science Letters, 329-330: 41-50. Silva, L.C.; Mcnaughton, N.J.; Armstrong, R.; Hartmann, L.A. & Fletcher, I.R. 2005. The Neoproterozoic Mantiqueira Province and its African connections: a zircon-based U–Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens. Precambrian Research, 136(3-4): 203-240. Silva, M.A.; Camozzato, E.; Paes, V.J.C.; Junqueira, P.A. & Ramgrab, G.E. Folha SF.24-Vitoria. 2004. SCHOBBENHAUS, C.; GONÇALVES, J.H.; SANTOS, J.O.S.; ABRAM, M.B.; LEÃO NETO, R.; MATOS, G.M.M.; VIDOTTI, R.M.; RAMOS, M.A.B. & JESUS, J.D.A. (eds.), 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. Brasília, CPRM. Silva, T.P. & Mello, C.L. 2011. Reativações Neotectônicas na Zona de Cisalhamento do Rio Paraíba do Sul (Sudeste do Brasil). Geologia USP. Série Científica, 11(1): 95-111. Spier, C.A.; Vasconcelos, P.M. & Oliveira, S.M.B. 2006. 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Chemical Geology, 234(1-2): 79-104. Vasconcelos. P.M.; Becker, T.A; Renne, P.R & Brimhal, G.H. 1992. Age and duration of weathering by 40K-40Ar and 40Ar/39Ar analysis of potassium-manganese oxides. Science, 258: 451-455. Vasconcelos, P.M. & Carmo, I.O. 2018. Calibrating denudation chronology through 40Ar/39Ar weathering geochronology. Earth-Science Reviews, 179: 411-435. Velde, B. & Meunier, A. 2008. The Origin of Clay Minerals in Soils and Weathered Rocks. Berlim, Springer, 406 p. Vieira, V.S. & Menezes, R.G. (org.). 2015. Geologia e Recursos Minerais do Estado do Espírito Santo: texto explicativo do mapa geológico e de recursos minerais, escala 1:400.000. Belo Horizonte, CPRM, 289 p. Vodyanitskii, Y.N.; Vasil’ev, A.A.; Lesovaya, S.N.; Sataev, E.F & Sivtsov, A.V. 2004. Formation of Manganese Oxides in Soils. Eurasian Soil Science, 37(6): 572-584. Wiedemann, C.M.; Campos, C.M.; Medeiros, S.R.; Mendes, J.C.; Ludka, I.P. & Moura, J.C. 2002. Architecture of Late orogenic plutons in the Araçuaí-Ribeira Folded Belt, Southeast Brazil. Gondwana Research, 19: 381-399. Zalán, P.V. & Oliveira, J.A.B. 2005. Origem e evolução do Sistema de Riftes Cenozóicos do Sudeste do Brasil. Boletim de Geociências da Petrobras,13(2): 269-300. Zhang, Y.; Schaubs, P.M.; Zhao, C.; Ord, A. Hobbs, B.E. & Barnicoat, A.C. 2008. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. In: WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.; HOLDSWORTH, R.E. & COLLETTINI, C. (eds.). The Internal Structure of Fault Zones: implications for mechanical and fluid-flow properties. The Geological Society, London, 299, p. 239-255.Copyright (c) 2020 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2020-09-21T10:59:44Zoai:www.revistas.ufrj.br:article/37227Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2020-09-21T10:59:44Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
title |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
spellingShingle |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil Calegari, Salomão Silva Brittle Structures; Relative Dating; Cenozoic. Brittle Structures; Relative Dating; Cenozoic. |
title_short |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
title_full |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
title_fullStr |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
title_full_unstemmed |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
title_sort |
Filling Materials in Brittle Structures as Indicator of Cenozoic Tectonic Events in Southeastern Brazil |
author |
Calegari, Salomão Silva |
author_facet |
Calegari, Salomão Silva Aiolfi, Thaís Ruy Neves, Mirna Aparecida Soares, Caroline Cibele Vieira Marques, Rodson de Abreu Caxito, Fabrício de Andrade |
author_role |
author |
author2 |
Aiolfi, Thaís Ruy Neves, Mirna Aparecida Soares, Caroline Cibele Vieira Marques, Rodson de Abreu Caxito, Fabrício de Andrade |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Calegari, Salomão Silva Aiolfi, Thaís Ruy Neves, Mirna Aparecida Soares, Caroline Cibele Vieira Marques, Rodson de Abreu Caxito, Fabrício de Andrade |
dc.subject.por.fl_str_mv |
Brittle Structures; Relative Dating; Cenozoic. Brittle Structures; Relative Dating; Cenozoic. |
topic |
Brittle Structures; Relative Dating; Cenozoic. Brittle Structures; Relative Dating; Cenozoic. |
description |
The filling materials in brittle structures can provide useful information about the Cenozoic evolution developed over proterozoic terrains. When these materials are affected by faults, they record deformation phases that can be determined chronologically and, in the occurrence of lateritic materials, it is possible to infer the paleoenvironmental conditions during the mineral formation. This work aimed to identify crystalline phases of brittle structure filling materials and to propose evolutionary interpretations for Cenozoic tectonic reactivation based on literature data. The study area is located in the Southern part of the Espírito Santo State, near the Brazilian Southeastern Continental Margin, where proterozoic geological structures have been reactivated since the mesozoic rift phase, up to the Holocene. The mineral assemblage found in the filling materials includes primary minerals such as quartz, muscovite, microcline, rutile, titanite, and bannisterite; and the weathering minerals such as kaolinite, illite, hematite, goethite, hydrobiotite, lithiophorite and, birnessite. The mineralogical association found in the filling materials denotes the action of fluid phases with mineral precipitation at the brittle discontinuities during the weathering processes that occurred during the Cenozoic, probably between the Miocene and the Pleistocene. The faults, which striations are marked on the filling materials, originated after (in the case of the manganese oxides) or during (in the case of the illite) the mineral formation, indicating that the maximum age of these faults is in the Miocene. The origin of the brittle structures that affected the filling materials studied here is linked to the uplifting of the Continental Brazilian Margin, when ancient geological structures were reactivated as normal faults due to the local action of an extensional regime. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-21 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/37227 10.11137/2020_2_237_254 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/37227 |
identifier_str_mv |
10.11137/2020_2_237_254 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/37227/pdf /*ref*/Allaby, M. (ed.). 2008. Dictionary of Earth Sciences. 3ª Ed. Oxford, Oxford University Press. 661 p. Alkmim F.F.; Marsak, S.; Pedrosa-Soares, A.C.; Peres, G.G.; Cruz, S.C.P. & Whittinhgton, A. 2006. Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Research, 149 (1-2): 46-64. Almeida, F.F.M.; Hasui, Y.; Brito-Neves, B.B. & Fuck, R.A. 1981. Brazilian Structural Provinces: An Introduction. Earth-Science Reviews, 7 (1-2): 1-29. Anand, R.R. & Paine, M. 2002. Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Australian Journal of Earth Sciences, 49: 3-162. Angelier, J. & Mechler, P. 1977. Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits. Bulletin de la Société Géologique de France, S7-XIX (6): 1309-1318. Anthony, J.W.; Bideaux, R.A.; Bladh, K.W. & Nichols, M.C. (eds.). 2001. Handbook of Mineralogy, Mineralogical Society of America. USA. Available in: http://www. handbookofmineralogy.org. Accessed 30 ago 2016. Augustin, C.H.R.R.; Lopes, M.R.S. & Silva, S.M. 2013. Lateritas: um conceito ainda em construção. Revista Brasileira de Geomorfologia, 14 (3): 241-257. Balsamo, F.; Bezerra, F.H.R.; Vieira, M.M. & Storti, F. 2013. Structural control on the formation of iron-oxide concretions and Liesegang bands in faulted, poorly lithified Cenozoic sandstones of the Paraíba Basin, Brazil. Geological Society of America Bulletin, 125 (5-6): 913-931. Bezerra, F.H.R. & Vita-Finzi, C. 2000. How active is a passive margin? Paleoseismicity in Northeastern Brasil. Geology, 28: 591-594. Brindley, G.W. & Brown, G. 1980. Crystal Structures of Clay Minerals and Their X-ray Identification. London, Mineralogical Society. 495 p. Brito-Neves, B.B.; Campos Neto, M.C. & Fuck, R.A. 1999. From Rodinia to Western Gondwana: an approach to the Brasiliano-Pan African Cycle and orogenic collage. Episodes, 22(3): 155-166. Calegari, S.S.; Neves, M.A.; Guadagnin, F.; França, G.S. & Vincentelli, M.G.C. 2016. The Alegre Lineament and its role over the tectonic evolution of the Campos Basin and adjacent continental margin, Southeastern Brazil. Journal of South American Earth Sciences, 69: 226-242. Carmo, I.O. & Vasconcelos, P.M. 2004. Geochronological evidence for pervasive Miocene weathering, Minas Gerais, Brazil. Earth Surface Processes and Landforms, 29 (11): 1303-1320. Carmo, I.O. & Vasconcelos, P.M. 2006. 40Ar/39Ar geochronology constraints on late miocene weathering rates in Minas Gerais, Brazil. Earth and Planetary Science Letters, 241: 80-94. Churchman, G.J. & Lowe, D.J. 2012. Alteration, formation and occurrence of minerals in soils. In: HUANG, P.M.; LI, Y. & SUMNER, M.E. (eds.). Handbook of Soil Sciences. Properties and Processes. CRC Press, Florida, p. 20.1-20.72. Cogné, N.; Gallagher, K.; Cobbold, P.R.; Riccomini, C. & Gautheron, C. 2012. Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling. Journal of Geophysical Research, 117: 1-16. Costa, M. 1991. Aspectos geológicos dos lateritos da Amazônia. Revista Brasileira de Geociências, 21(2): 146-160. Cunningham, D.; Alkmim, F.F. & Marshak, S. 1998. A structural transect across the coastal mobile belt in the Brazilian Highlands (latitude 20°S): the roots of a Precambrian transpressional orogen. Precambrian Research, 92(3): 251-275. De Campos, C.M.; Mendes, J.C.; Ludka, I.P.; Medeiros, S.R.; Moura, J.C. & Wallfass, C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. Journal of the Virtual Explorer, 17: 1-35. De Putter, T.; Ruffet, G.; Yans, J. & Mees, F. 2015. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region. Ore Geology Reviews, 71: 350-362. Delvaux, D.; Moeys, R.; Stapel, G.; Petit, C.; Levi, K.; Miroshnichenko, A.; Ruzhich, V. & San’kov, V. 1997. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282: 1-38. Delvaux, D. & Sperner, B. 2003. Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: NIEUWLAND, D.A. (ed.), New Insights into Structural Interpretation and Modelling, Special Publication of the Geological Society of London, 212, p. 75-100. Deng, X.D. & Li, J.W. 2013. 40Ar/39Ar dating of cryptomelane from the Baye manganese deposit, SW Yunnan, China: implications for growth rate of supergene Mn-oxide veins. Science China: Earth Sciences, 59(10): 1654-1663. Dunn, P.J.; Leavens, P.B.; Norberg, J.A. & Ramik, R.A. 1981. Bannisterite: new chemical data and empirical fomrulae. American Mineralogist, 66: 1063-1067. ERSDAC. 2013. Earth Remote Sensing Data Analysis Center (ASTER GDEM). Available in: http://gdem.ersdac. jspacesystems.or.jp. Accessed 10 set 2013. Faulkner, D.R.; Jackson, C.A.L.; Lunn, R.J.; Schlische, R.W.; Shipton, Z.K.; Wibberley, C.A.J. & Withjack, M.O. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557-1575. Féboli, W. 1993. Programa Levantamentos Geológicos Básicos: Folha Piúma (SF. 24-V-A-VI,), Estado do Espírito Santo, escala 1:100.000. Brasília: DNPM/ CPRM, 144 p. Frohlich, C. 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75: 193-198. Fuck, R.A.; Brito-Neves, B.B. & Schobbenhaus, C. 2008. Rodinia descendants in South America. Precambrian Research, 160(1-2): 108-126. Gatto, L.C.S.; Ramos, V.L.S.; Nunes, B.T.A.; Mamede, L.; Góes, M.H.B.; Mauro, C.A.; Alvarenga, S.M.; Franco, E.M.S.; Quirico, A.F. & Neves, L.B. 1983. Geomorfologia. In: Moreira, H.F. (ed.). Projeto RADAMBRASIL - Levantamento de Recursos Naturais: Folhas SF-23/24, Rio de Janeiro/Vitória. 32, p 305-384. GEBCO. 2020. General Bathymetric Chart of the Oceans. Available in: https://www.gebco.net/data_and_ products/gridded_bathymetry_data. Accessed 25 apr 2020. GEOBASES. 2002. Sistema Integrado de Bases Geoespaciais do Estado do Espírito Santo. INCAPER. Available in: http://www.geobases.es.gov.br/. Accessed 28 ago 2016 Grohmann, C.H.; Campanha, G.A.C. & Soares Junior, A.V. OpenStereo: um programa Livre e multiplataforma para análise de dados estruturais. In: XIII SIMPÓSIO NACIONAL DE ESTUDOS TECTÔNICOS. Campinas, 2011. Paper, p. 26-28. Hackspacher, P.C.; Ribeiro, L.F.B.; Ribeiro, M.C.S.; Fetter, A.H.; Hadler Neto, J.C.; Tello, C.E.S. & Dantas, E.L. 2004. Consolidation and break-up of the South American Platform in Southeastern Brazil: tectonothermal and denudation histories. Gondwana Research, 7(1): 91-101. Harman, R.; Gallagher, K.; Brown, R.; Raza, A. & Bizzi, L. 1998. Accelerated denudation and tectonic/geomorphic reactivation of the cratons of Northeastern Brazil during the Late Cretaceous. Journal of Geophysical Research, 103 (B11): 27091-27105. Heilbron, M.; Pedrosa-Soares, A.C.; Neto, M.C.C.; Silva, L.C.; Trow, R.A.J. & Janasi, V.A. 2004. A Província Mantiqueira. In: MANTESSO-NETO, V.; BARTORELLI, A.; CARNEIRO, C.D.R & BRITO-NEVES, B.B. (eds.). Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo, Becca, p. 180-212. Horn, A.H.; Faria, B.; Gardini, G.M.; Vasconcellos, L. & Oliveira, M.R. 2007. Programa Geologia do Brasil: Folha Espera Feliz (SE24-V-A-IV), relatório final, escala 1:100.000. Belo Horizonte, UFMG/CPRM, 72 p. Jelinek, A.R.; Chemale JR.F.; Van Der Beek, P.A.; Guadagnin, F.; Cupertino, J.A. & Viana, A. 2014. Denudation history and landscape evolution of the northern East-Brazilian continental margin from apatite fission-track thermochronology. Journal of South American Earth Sciences, 54: 158-181. Karl, M.; Glasmacher, U.A.; Kollenz, S.; Franco-Magalhaes, A.O.B.; Stockli, D.F. & Hackspacher, P.C. 2013. Evolution of the South Atlantic passive continental margin in Southern Brazil derived from zircon and apatite (U–Th–Sm)/He and fission-track data. Tectonophysics, 604: 224-244. Kurz, W.; Imber, J.; Wibberley, C.A.J.; Holdsworth, R.E. & Collettini, C. 2008. The internal structure of fault zones: fluid flow and mechanical properties. In: WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.; HOLDSWORTH, R.E. & COLLETTINI, C. (eds.) The internal structure of fault zones: implications for mechanical and fluid-flow properties. The Geological Society, London, Special publication, 299, p. 1-3. Lourenço, F.S.; Alkmim, F.F.; Araújo, M.N.C.; Romeiro, M.A.T.; Matos, G.C. & Crósta, A.P. 2016. The Piúma lineament, southern Espírito Santo: structural expression and tectonic significance. Brazilian Journal of Geology, 46(4): 531-546. Meunier, A. 2005. Clays. Berlin, Springer, 406 p. Modenesi-Gauttieri, M.C.; Toledo, M.C.M; Hiruma, S.T.; Taioli, F. & Shimada, H. 2011. Deep weathering and landscape evolution in a tropical plateau. Catena, 85: 221-230. Monteiro, H.S.; Vasconcelos, P.M.; Farley, K.A.; Spier, C.A. & Mello, C.L. 2014. (U–Th)/He geochronology of goethite and the origin and evolution of cangas. Geochimica et Cosmochimica Acta, 131: 267-289. Morais Neto, J.M.; Hegarty, K.A.; Karner, G.D. & Alkmim, F.F. 2009. Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema Province, northeastern Brazil. Marine and Petroleum Geology, 26(7): 1070-1086. Noce, C.M.; Pedrosa-Soares, A.C.; Silva, L.C. & Alkmim, F.F. 2007. O embasamento arqueano e paleoproterozóico do Orógeno Araçuaí. Geonomos, 15(1): 17-23. Novo, T.A.; Noce, C.M.; Batista, G.A.P.; Quéméneur, J.J.G.; Martins, B.S.; Santos, S.W.M.; Carneiro, G.A. & Horn, A.H. 2014. Programa Geologia do Brasil: Geologia e Recursos Minerais da Folha Manhumirim (SF24-V-A-IV), Estados do Espírito Santo e Minas Gerais, escala 1:100.000, Belo Horizonte, CPRM, 77 p. Oberlin, A. & Couty, R. 1970. Conditions of kaolinite formation during alteration of some silicates by water at 200°C. Clays and Clay Minerals, 18: 347-356. Pedrosa-Soares, A.C.; Campos, C.; Noce, C.M.; Silva, L.C.; Roncato, J.; Novo, T.; Medeiros, S.; Castañeda, C.; Queiroga, G.; Dantas, E.; Dussin, I. & Alkmim, F.F. 2011. Late Neoproterozoic-Cambrian granitic magmatism in the Araçuaí Orogen, the Eastern Brazilian Pegmatite Province and related mineral resources (SE Brazil). Journal of the Geological Society of London, 350: 25-51. Pedrosa-Soares, A.C.; Alkmim, F.F.; Tack, L.; Noce, C.M; Babinski, M.; Silva, L.C. & Martins-Neto, M.A. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo Orogen. Journal of the Geological Society of London, 294: 153-172. Pedrosa-Soares, A.C.; Noce, C.M.; Alkmim, F.F.; Silva, L.C.; Babinski, M.; Cordani, U. & Castañeda, C. 2007. Orógeno Araçuaí: síntese do conhecimento 30 anos após Almeida 1977. Geonomos, 15(1): 1-16. Pedrosa-Soares, A.C.; Noce, C.M.; Wiedemann, C.M. & Pinto, C.P. 2001. The Araçuaí-West-Congo Orogen in Brazil: an overview of a confined orogen formed during Gondwanaland assembly. Precambrian Research, 110(1-4): 307-323. Pedrosa-Soares, A.C. & Wiedemann-Leonardos, C.M. 2000. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. In: CORDANI U.G.; MILANI, E.J.; TOMAZ FILHO, A. & CAMPOS, D.A. (eds.). Tectonic Evolution of South America. São Paulo, Sociedade Brasileira de Geologia, p. 265-285. Riccomini, C.; Peloggia, A.U.G.; Saloni, J.C.L.; Kohnke, M.W. & Figueira, R.M. 1989. Neotectonic activity in the Serra do Mar rift system (southeastern Brazil). Journal of South America Earth Sciences, 2(2): 191-197. Righi, D & Meunier, A. 1995. Origin of Clays by Rock Weathering and Soil Formation. In: VELDE, B. (ed.) Origin and mineralogy of clays. Clays and the environment. Springer, Berlin, p. 43-161. Romano, A.W. & Castañeda, C. 2006. A tectônica distensiva pós-mesozoica no condicionamento dos depósitos de bauxita da mata mineira. Geonomos, 14(1-2): 1-5. Ross, J. 2011. Relevo brasileiro: uma nova proposta de classificação. Revista do Departamento de Geografia, 4: 25-39. Salvador, E.D. & Riccomini, C. 1995. Neotectônica da região do alto estrutural de Queluz (SP-RJ, Brasil). Revista Brasileira de Geociências, 25(3): 151-164. Santos, M. & Ladeira, F.S.B. 2006. Tectonismo em perfis de alteração da Serra de Itaqueri (SP): Análise através de indicadores cinemáticos de falhas. Geociências, 25(1): 135-149. Scheinost, A.C. 2004. Metal Oxides. In: HILLEL, D (ed.). Encyclopedia of Soils in the Environment. Elsevier, 2, p. 428-438. Shuster, D.L.; Farley, K.A.; Vasconcelos, P.M.; Balco, G.; Monteiro, H.S.; Waltenberg, K. & Stone, J.O. 2012. Cosmogenic 3 He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces. Earth and Planetary Science Letters, 329-330: 41-50. Silva, L.C.; Mcnaughton, N.J.; Armstrong, R.; Hartmann, L.A. & Fletcher, I.R. 2005. The Neoproterozoic Mantiqueira Province and its African connections: a zircon-based U–Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens. Precambrian Research, 136(3-4): 203-240. Silva, M.A.; Camozzato, E.; Paes, V.J.C.; Junqueira, P.A. & Ramgrab, G.E. Folha SF.24-Vitoria. 2004. SCHOBBENHAUS, C.; GONÇALVES, J.H.; SANTOS, J.O.S.; ABRAM, M.B.; LEÃO NETO, R.; MATOS, G.M.M.; VIDOTTI, R.M.; RAMOS, M.A.B. & JESUS, J.D.A. (eds.), 2004. Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. Brasília, CPRM. Silva, T.P. & Mello, C.L. 2011. Reativações Neotectônicas na Zona de Cisalhamento do Rio Paraíba do Sul (Sudeste do Brasil). Geologia USP. Série Científica, 11(1): 95-111. Spier, C.A.; Vasconcelos, P.M. & Oliveira, S.M.B. 2006. 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil. Chemical Geology, 234(1-2): 79-104. Vasconcelos. P.M.; Becker, T.A; Renne, P.R & Brimhal, G.H. 1992. Age and duration of weathering by 40K-40Ar and 40Ar/39Ar analysis of potassium-manganese oxides. Science, 258: 451-455. Vasconcelos, P.M. & Carmo, I.O. 2018. Calibrating denudation chronology through 40Ar/39Ar weathering geochronology. Earth-Science Reviews, 179: 411-435. Velde, B. & Meunier, A. 2008. The Origin of Clay Minerals in Soils and Weathered Rocks. Berlim, Springer, 406 p. Vieira, V.S. & Menezes, R.G. (org.). 2015. Geologia e Recursos Minerais do Estado do Espírito Santo: texto explicativo do mapa geológico e de recursos minerais, escala 1:400.000. Belo Horizonte, CPRM, 289 p. Vodyanitskii, Y.N.; Vasil’ev, A.A.; Lesovaya, S.N.; Sataev, E.F & Sivtsov, A.V. 2004. Formation of Manganese Oxides in Soils. Eurasian Soil Science, 37(6): 572-584. Wiedemann, C.M.; Campos, C.M.; Medeiros, S.R.; Mendes, J.C.; Ludka, I.P. & Moura, J.C. 2002. Architecture of Late orogenic plutons in the Araçuaí-Ribeira Folded Belt, Southeast Brazil. Gondwana Research, 19: 381-399. Zalán, P.V. & Oliveira, J.A.B. 2005. Origem e evolução do Sistema de Riftes Cenozóicos do Sudeste do Brasil. Boletim de Geociências da Petrobras,13(2): 269-300. Zhang, Y.; Schaubs, P.M.; Zhao, C.; Ord, A. Hobbs, B.E. & Barnicoat, A.C. 2008. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. In: WIBBERLEY, C.A.J.; KURZ, W.; IMBER, J.; HOLDSWORTH, R.E. & COLLETTINI, C. (eds.). The Internal Structure of Fault Zones: implications for mechanical and fluid-flow properties. The Geological Society, London, 299, p. 239-255. |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; Vol 43, No 2 (2020); 237_254 Anuário do Instituto de Geociências; Vol 43, No 2 (2020); 237_254 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053542347833344 |