Inverse Margin Filtration Applied for Surface Water Treatment

Detalhes bibliográficos
Autor(a) principal: Bello, Sergio Luiz
Data de Publicação: 2021
Outros Autores: Nonato, Thyara Campos Martin, Filho, Paulo Belli, Neto, Augusto Oliveira, Sens, Maurício Luiz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/40923
Resumo: Technologies to be applied under the context of protection and revitalization of surface water must be developed and improved in order to enhance the quality of aquatic ecosystems. In this way, this study aimed to evaluate the treatment performance of an inverse margin filtration system (IMF) applied in surface water treatment. The IMF was monitored during 1 year through the classic water quality parameters, and thus the treatment performance along the filtration path was identified. The results showed an average removal efficiency of 41% for turbidity, 35% for apparent color, 43% for true color, 26% for total suspended solids and total organic carbon, 53% for nitrogen, 46% for phosphorus, 91% for iron, 8% for manganese, and 100% for fecal coliforms. In this way, the IMF system proved to be a technology that can be applied in the treatment of water in lentic environments. 
id UFRJ-21_9f932dab1c43f00c798ff3197b5ad60b
oai_identifier_str oai:www.revistas.ufrj.br:article/40923
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Inverse Margin Filtration Applied for Surface Water TreatmentLentic ecosystems revitalization; Inverse margin filtration; Filtration distanceTechnologies to be applied under the context of protection and revitalization of surface water must be developed and improved in order to enhance the quality of aquatic ecosystems. In this way, this study aimed to evaluate the treatment performance of an inverse margin filtration system (IMF) applied in surface water treatment. The IMF was monitored during 1 year through the classic water quality parameters, and thus the treatment performance along the filtration path was identified. The results showed an average removal efficiency of 41% for turbidity, 35% for apparent color, 43% for true color, 26% for total suspended solids and total organic carbon, 53% for nitrogen, 46% for phosphorus, 91% for iron, 8% for manganese, and 100% for fecal coliforms. In this way, the IMF system proved to be a technology that can be applied in the treatment of water in lentic environments. Universidade Federal do Rio de JaneiroLAPOAUFSCBello, Sergio LuizNonato, Thyara Campos MartinFilho, Paulo BelliNeto, Augusto OliveiraSens, Maurício Luiz2021-08-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/4092310.11137/1982-3908_2021_44_40923Anuário do Instituto de Geociências; Vol 44 (2021)Anuário do Instituto de Geociências; Vol 44 (2021)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/40923/pdf/*ref*/ABNT. 2007. Associação Brasileira de Normas Técnicas. NBR 15495-1/07: Poços de monitoramento de águas subterrâneas em aquíferos granulares. APHA. 2017. American Public Health Association. Standard methods for examination of water and wastewater. 23. ed. Washington, DC. Arantes, E.J. 2003. Emprego de infiltrômetros na caracterização da interação entre rio e aquífero. Programa de Pós-Graduação em Hidraúlica e Saneamento, Universidade de São Paulo de São Paulo, Dissertação de Mestrado, 103p. Bertelkamp, C.; Verliefde, A.R.D.; Schoutteten, K.; Vanhaecke, L.; Bussche, J. Vanden; Singhal, N.; Hoek, J.P. 2016.The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: a laboratory-scale column study. Science of The Total Environment. 544:318. http://dx.doi.org/10.1016/j.scitotenv.2015.11.035. Bourg, A.C.M.; KedzioreK, M.A.M. & Darmendrail, D. 2002. Organic matter as the driving force in the solubilization of Fe and Mn during riverbank filtration. In: RIVERBANK FILTRATION: UNDERSTANDING CONTAMINANT BIOGEOCHEMISTRY AND PATHOGEN REMOVAL. Dordrecht: Kluwer Academic Publisher, p. 43-54. CONAMA. 2005. Conselho Nacional do Meio Ambiente, resolução 357/2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília/ Disponível em: < http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459> Acesso em: 15 dez. 2020. Dash, R.R.; Mehrotra, I.; Kumar, P. & Grischek, T. 2008. Lake bank filtration at Nainital, India: water-quality evaluation. Hydrogeology Journal, 16(6):1089-1099. Grischek, T.; Schubert, J.; Jasperse, J. L.; Stowe, S. M.; Collins, M.R 2007. What is an appropriate site for RBF? In: Management of Aquifer Recharge for Sustainability. USA: Acacia Publishing Incorporated. Grünheid, S.; Amy, G. & Jekel, M. 2005. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14): 3219-3228. https://doi.org/10.1016/j.watres.2005.05.030. Kuehn, W. & Mueller, U. 2000. Riverbank Filtration: an overview. Journal American Water Works Association, 92(12):60-69. https://doi.org/10.1002/j.1551-8833.2000.tb09071.x Hu, B.; Teng, Y.; Zhai, Y.; Zuo, R.; Li, J. & Chen, H. 2016. Riverbank filtration in China: a review and perspective. Journal of Hydrology, 541: 914-927. https://doi.org/10.1016/j.jhydrol.2016.08.004 Maeg, S.K.; Sharma, S.K.; Magic-Knezev, A. & Amy, G. 2008. Fate of effluent organic matter (EFOM) and natural organic matter (NOM) through riverbank filtration. Water science and technology, 57(12): 1999-2007. https://doi.org/10.2166/wst.2008.613 Massmann, G.; Nogeitzig, A.; Taute, T. & Pekdeger, A. 2008. Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environmental Geology, 54 (1): 53-65. https://doi.org/10.1007/s00254-007-0792-9 Missimer, T.M.; Ghaffour, N .; Deewah, A.H.A.; Rachman, R.; Maliva, R.G. & Amy, R. 2013. Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics. Desalination, 322: 37-51. https://doi.org/10.1016/j.desal.2013.04.021 Romero-Esquivel, L.G. 2012. Remoção de matéria orgânica natural e precursors de trialometanos por filtração em margem na Lagoa do Peri, Santa Catarina, Brasil. Programa de Pós-graduação em Engenharia Ambiental, Universidade Federal de Santa Catarina, Tese de de Doutorado, 246 p. Shamsuddin, M.K.N.; Sulaiman, W.N.A.; Suratman, S.; Zakaria, M.P. & Samuding, K. 2013. Conjunctive use of surface water and groundwater via the bank infiltration method. Arabian Journal of Geosciences, 7(9): 3731-3753. Walsh, C. 2000. Urban impacts on the ecology of receiving waters: a framework for assessment, conservation and restoration. Hydrobiologia, 107: 107-114. Weber, K. 2016. Microbial Community Assessment in Wetlands for Water Pollution Control: past, present, and future outlook. Water, 8(11): 503. https://doi.org/10.3390/w8110503Copyright (c) 2021 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-08-05T22:12:01Zoai:www.revistas.ufrj.br:article/40923Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-08-05T22:12:01Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Inverse Margin Filtration Applied for Surface Water Treatment
title Inverse Margin Filtration Applied for Surface Water Treatment
spellingShingle Inverse Margin Filtration Applied for Surface Water Treatment
Bello, Sergio Luiz
Lentic ecosystems revitalization; Inverse margin filtration; Filtration distance
title_short Inverse Margin Filtration Applied for Surface Water Treatment
title_full Inverse Margin Filtration Applied for Surface Water Treatment
title_fullStr Inverse Margin Filtration Applied for Surface Water Treatment
title_full_unstemmed Inverse Margin Filtration Applied for Surface Water Treatment
title_sort Inverse Margin Filtration Applied for Surface Water Treatment
author Bello, Sergio Luiz
author_facet Bello, Sergio Luiz
Nonato, Thyara Campos Martin
Filho, Paulo Belli
Neto, Augusto Oliveira
Sens, Maurício Luiz
author_role author
author2 Nonato, Thyara Campos Martin
Filho, Paulo Belli
Neto, Augusto Oliveira
Sens, Maurício Luiz
author2_role author
author
author
author
dc.contributor.none.fl_str_mv LAPOA
UFSC
dc.contributor.author.fl_str_mv Bello, Sergio Luiz
Nonato, Thyara Campos Martin
Filho, Paulo Belli
Neto, Augusto Oliveira
Sens, Maurício Luiz
dc.subject.por.fl_str_mv Lentic ecosystems revitalization; Inverse margin filtration; Filtration distance
topic Lentic ecosystems revitalization; Inverse margin filtration; Filtration distance
description Technologies to be applied under the context of protection and revitalization of surface water must be developed and improved in order to enhance the quality of aquatic ecosystems. In this way, this study aimed to evaluate the treatment performance of an inverse margin filtration system (IMF) applied in surface water treatment. The IMF was monitored during 1 year through the classic water quality parameters, and thus the treatment performance along the filtration path was identified. The results showed an average removal efficiency of 41% for turbidity, 35% for apparent color, 43% for true color, 26% for total suspended solids and total organic carbon, 53% for nitrogen, 46% for phosphorus, 91% for iron, 8% for manganese, and 100% for fecal coliforms. In this way, the IMF system proved to be a technology that can be applied in the treatment of water in lentic environments. 
publishDate 2021
dc.date.none.fl_str_mv 2021-08-05
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/40923
10.11137/1982-3908_2021_44_40923
url https://revistas.ufrj.br/index.php/aigeo/article/view/40923
identifier_str_mv 10.11137/1982-3908_2021_44_40923
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/40923/pdf
/*ref*/ABNT. 2007. Associação Brasileira de Normas Técnicas. NBR 15495-1/07: Poços de monitoramento de águas subterrâneas em aquíferos granulares. APHA. 2017. American Public Health Association. Standard methods for examination of water and wastewater. 23. ed. Washington, DC. Arantes, E.J. 2003. Emprego de infiltrômetros na caracterização da interação entre rio e aquífero. Programa de Pós-Graduação em Hidraúlica e Saneamento, Universidade de São Paulo de São Paulo, Dissertação de Mestrado, 103p. Bertelkamp, C.; Verliefde, A.R.D.; Schoutteten, K.; Vanhaecke, L.; Bussche, J. Vanden; Singhal, N.; Hoek, J.P. 2016.The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: a laboratory-scale column study. Science of The Total Environment. 544:318. http://dx.doi.org/10.1016/j.scitotenv.2015.11.035. Bourg, A.C.M.; KedzioreK, M.A.M. & Darmendrail, D. 2002. Organic matter as the driving force in the solubilization of Fe and Mn during riverbank filtration. In: RIVERBANK FILTRATION: UNDERSTANDING CONTAMINANT BIOGEOCHEMISTRY AND PATHOGEN REMOVAL. Dordrecht: Kluwer Academic Publisher, p. 43-54. CONAMA. 2005. Conselho Nacional do Meio Ambiente, resolução 357/2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília/ Disponível em: < http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459> Acesso em: 15 dez. 2020. Dash, R.R.; Mehrotra, I.; Kumar, P. & Grischek, T. 2008. Lake bank filtration at Nainital, India: water-quality evaluation. Hydrogeology Journal, 16(6):1089-1099. Grischek, T.; Schubert, J.; Jasperse, J. L.; Stowe, S. M.; Collins, M.R 2007. What is an appropriate site for RBF? In: Management of Aquifer Recharge for Sustainability. USA: Acacia Publishing Incorporated. Grünheid, S.; Amy, G. & Jekel, M. 2005. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14): 3219-3228. https://doi.org/10.1016/j.watres.2005.05.030. Kuehn, W. & Mueller, U. 2000. Riverbank Filtration: an overview. Journal American Water Works Association, 92(12):60-69. https://doi.org/10.1002/j.1551-8833.2000.tb09071.x Hu, B.; Teng, Y.; Zhai, Y.; Zuo, R.; Li, J. & Chen, H. 2016. Riverbank filtration in China: a review and perspective. Journal of Hydrology, 541: 914-927. https://doi.org/10.1016/j.jhydrol.2016.08.004 Maeg, S.K.; Sharma, S.K.; Magic-Knezev, A. & Amy, G. 2008. Fate of effluent organic matter (EFOM) and natural organic matter (NOM) through riverbank filtration. Water science and technology, 57(12): 1999-2007. https://doi.org/10.2166/wst.2008.613 Massmann, G.; Nogeitzig, A.; Taute, T. & Pekdeger, A. 2008. Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environmental Geology, 54 (1): 53-65. https://doi.org/10.1007/s00254-007-0792-9 Missimer, T.M.; Ghaffour, N .; Deewah, A.H.A.; Rachman, R.; Maliva, R.G. & Amy, R. 2013. Subsurface intakes for seawater reverse osmosis facilities: Capacity limitation, water quality improvement, and economics. Desalination, 322: 37-51. https://doi.org/10.1016/j.desal.2013.04.021 Romero-Esquivel, L.G. 2012. Remoção de matéria orgânica natural e precursors de trialometanos por filtração em margem na Lagoa do Peri, Santa Catarina, Brasil. Programa de Pós-graduação em Engenharia Ambiental, Universidade Federal de Santa Catarina, Tese de de Doutorado, 246 p. Shamsuddin, M.K.N.; Sulaiman, W.N.A.; Suratman, S.; Zakaria, M.P. & Samuding, K. 2013. Conjunctive use of surface water and groundwater via the bank infiltration method. Arabian Journal of Geosciences, 7(9): 3731-3753. Walsh, C. 2000. Urban impacts on the ecology of receiving waters: a framework for assessment, conservation and restoration. Hydrobiologia, 107: 107-114. Weber, K. 2016. Microbial Community Assessment in Wetlands for Water Pollution Control: past, present, and future outlook. Water, 8(11): 503. https://doi.org/10.3390/w8110503
dc.rights.driver.fl_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 44 (2021)
Anuário do Instituto de Geociências; Vol 44 (2021)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053542943424512