Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Anuário do Instituto de Geociências (Online) |
Texto Completo: | https://revistas.ufrj.br/index.php/aigeo/article/view/36002 |
Resumo: | O objetivo deste estudo foi avaliar o desempenho das simulações acopladas e atmosféricas dos modelos da família HadGEM1.2 em capturar o sinal da variabilidade interanual (IA) dos eventos extremos de precipitação sobre a região da Amazônia. As séries temporais de precipitação foram filtradas na escala interanual usando a transformada rápida de Fourier e os extremos foram calculados utilizando a técnica dos percentis. A análise das composições das anomalias interanuais de precipitação no verão e inverno austral, em geral, mostra que as simulações acopladas e atmosféricas representam satisfatoriamente o padrão espacial desses eventos. Para os extremos secos, o padrão espacial das simulações foi muito semelhante. De uma forma geral, o padrão espacial das simulações apresenta menor viés no extremo chuvoso. A análise dos limiares de extremos secos e úmidos mostra que, tanto na Amazônia Norte (AMN) como na Amazônia (AMZ), as simulações representam o sinal da escala IA, com destaque para a região AMZ onde o viés em relação ao CMAP (ClimatePrediction Center – Merged Analysis of Precipitation) é menor. Embora apresentando diferenças, tanto as simulações acopladas como as atmosféricas, apresentam padrão semelhante e portanto, representam o sinal da escala interanual nos subdomínios da Amazônia aqui analisados. |
id |
UFRJ-21_baa30d70591f51f8a08a9df3a100ecc5 |
---|---|
oai_identifier_str |
oai:www.revistas.ufrj.br:article/36002 |
network_acronym_str |
UFRJ-21 |
network_name_str |
Anuário do Instituto de Geociências (Online) |
repository_id_str |
|
spelling |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade InteranualExtremos; Precipitação; AmazôniaO objetivo deste estudo foi avaliar o desempenho das simulações acopladas e atmosféricas dos modelos da família HadGEM1.2 em capturar o sinal da variabilidade interanual (IA) dos eventos extremos de precipitação sobre a região da Amazônia. As séries temporais de precipitação foram filtradas na escala interanual usando a transformada rápida de Fourier e os extremos foram calculados utilizando a técnica dos percentis. A análise das composições das anomalias interanuais de precipitação no verão e inverno austral, em geral, mostra que as simulações acopladas e atmosféricas representam satisfatoriamente o padrão espacial desses eventos. Para os extremos secos, o padrão espacial das simulações foi muito semelhante. De uma forma geral, o padrão espacial das simulações apresenta menor viés no extremo chuvoso. A análise dos limiares de extremos secos e úmidos mostra que, tanto na Amazônia Norte (AMN) como na Amazônia (AMZ), as simulações representam o sinal da escala IA, com destaque para a região AMZ onde o viés em relação ao CMAP (ClimatePrediction Center – Merged Analysis of Precipitation) é menor. Embora apresentando diferenças, tanto as simulações acopladas como as atmosféricas, apresentam padrão semelhante e portanto, representam o sinal da escala interanual nos subdomínios da Amazônia aqui analisados.Universidade Federal do Rio de JaneiroCustodio, Maria de SouzaGozzo, Luiz FelippeMachado, Jeferson Prietsch2020-12-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3600210.11137/2020_4_350_363Anuário do Instituto de Geociências; Vol 43, No 4 (2020); 350_363Anuário do Instituto de Geociências; Vol 43, No 4 (2020); 350_3631982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJporhttps://revistas.ufrj.br/index.php/aigeo/article/view/36002/22004/*ref*/Cavalcanti, I.F.A.; Marengo, J.A.; Satyamurty, P.; Nobre, C.A.; Trosnikov, I.; Bonatti, J.P.; Manzi, A.O.; Tarasova, T.; Pezzi, L.P.; D'Almeida, C.; Sampaio, G.; Castro, C.C.; Sanches, M.B. & Camargo, H. 2002. Global climatological features in a simulation using the CPTEC– COLA AGCM. Journal of Climate, 15: 2965–2988. Carvalho, L.M.V.; Jones, C. & Liebmann, B. 2004. The South Atlantic Convergence Zone: intensity, form, persistence, relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17: 88–108. Custodio, M.S.; da Rocha, R.P. & Vidale, P.L. 2012. Analysis of precipitation climatology simulated by high resolution coupled global models over the South America. Hydrological Research Letters,6: 92–97. Custodio, M.S.; da Rocha, R.P.; Ambrizzi, T. & Vidale, P.L. 2016. Avaliação da climatologia na região Amazônica nos modelos da família HiGEM. Ciência e Natura, 38(2): 1054-1063. Custodio, M.S.; da Rocha, R.P.; Ambrizzi, T.; Vidale, P.L. & Demory, M-E. 2017. Impact of increased horizontal resolution in coupled and atmosphere-only models of the HadGEM1 family upon the climate patterns of South America. Climate dynamics, 48(9-10): 3341-3364. Druyan, L.M.; Fulakeza, M. & Lonergan, P. 2002. Dynamic downscaling of seasonal climate predictions over Brazil. Journal of Climate, 15: 3411-3426. Fisch, G.; Marengo, J.A. & Nobre, C.A. 1998. Uma revisão sobre o clima da Amazônia. Acta Amazonica, 28(2): 101-126. Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J. & Vidale, P.L. 2006. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models, Journal of Geophysical Research, 111: D06105. Gandu, A.D. & Silva Dias, P.L. 1998. Impact of tropical heat sources on the South America tropospheric upper circulation and subsidence. Journal of Geophysical Research, 03: 6001–6015. doi:10.1029/97JD03114. Grimm, A.M. 2003. The El Niño impact on the summer monsoon system in Brazil: regional process versus remote influences. Journal of Climate, 16: 263-280. Johns, T.C.; Durman, C.F.; Banks, H.T.; Roberts, M.J.; McLaren, A.J.; Ridley, J.K.; Senior, C.A.; Williams, K.D.; Jones, A.; Rickard, G.J.; Cusack, S.; Ingram, W.J.; Crucifix, M.; Sexton, D.M.H.; Joshi, M.M.; Dong, B-W.; Spencer, H.; Hill, R.S.R.; Gregory, J.M.; Keen, A.B.; Pardaens, A.K.; Lowe, J.A.; Bodas-Salcedo, A.; Stark, S. & Searl, Y.2006. The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. Journal of Climate, 19(7):1327-1353. Kodama, Y-M. 1992. Large-scale common features of sub-tropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones. Journal of the Meteorological Societyof Japan, 70: 813-835. Kousky, V.E. 1985. Atmospheric circulation changes associated with rainfall anomalies over Tropical Brazil. Monthly Weather Review, 113: 120-128. Li, J-L.F.; Martin, K.; Farrara, J.D. & Mechoso, C.R. 2002. The impact of stratocumulus cloud radiative properties on surface heat fluxes simulated with a general circulation model. Monthly Weather Review, 130:1433–1441. Liebmann, B.; Kiladis, G.N.; Vera, C.S.; Saulo, A.C. & Carvalho, L.M.V. 2004. Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. Journal of Climate, 17: 3829–3842. Marengo, J.A.; Soares, W.R.; Saulo, C. & Nicolini, M. 2004. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. Journal of Climate, 17: 2261-2280. Martin, G.M.; Ringer, M.A.; Pope, V.D.; Jones, A.; Dearden, C. & Hinton, T.J. 2006. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. Journal of Climate, 19: 1274–1301. Nobre, C.A.; Marengo, J.A & Artaxo, P. 2009. Understanding the Climate of Amazonia: Progress From LBA. In: KELLER, M.; BUSTAMANTE, M.; GASH, J. & SILVA DIAS (orgs.). Amazonia and Global Change. Geophysical Monograph Series, vol. 186. Washington, D.C.: American Geophysical Union Books, 145-147. Nobre, P.; Siqueira, L.; Almeida, R.; Malagutti, M.; Giarolla, E.; Castelão, G.P.; Bottino, M.J.; Kubota, P.; Figueroa, S.N.; Costa, M.C.; Baptista, M.; Irber, L. & Marcondes, G.G. 2013 Climate simulation and change in the Brazilian climate model. Journal of Climate 26: 6716–6732. Planton, S.; Déqué, M.; Chauvin, F. & Terray, L. 2008. Expected impacts of climate change on extreme climate events. Comptes Rendus Geoscience, 340(9-10): 564-574. Samanta, D.; Karnauskas, K.B. & Goodkin, N.F. (2019). Tropical Pacific SST and ITCZ biases in climate models: Double trouble for future rainfall projections? Geophysical Research Letters, 46: 2242– 2252. https://doi.org/10.1029/2018GL081363. Satyamurty, P.; Costa, C.P.W. & Manzi, A.O. 2013. Moisture source for the Amazon Basin: a study of contrasting years. Theoretical and Applied Climatology, 111(1-2):195-209. Seth, A.; Rojas, M. & Rauscher, S.A. 2010. CMIP3 projected changes in the annual cycle of the South American Monsoon. Climate Change, 98(3–4):331. Seluchi, M.E.; Saulo, A.C.; Nicolini, M. & Satyamurty,P. 2003. The Northwestern Argentinean Low: a study of two typical events. Monthly Weather Review, 131: 2361-2378. Shaffrey, L.C.; Stevens, I.; Norton, W.A.; Roberts, M.J.; Vidale, P.L.; Harle, J.D.; Jrrar, A.; Stevens, D.P.; Woodage, M.J.; Demory, M.; Donners, J.; Clark, D.B.; Clayton, A.; Cole, J.W.; Wilson, S.; Connolley, W.M.; Davies, T.M.; Iwi, A.; Johns, T.C.; King, J.C.; New, A.L.; Slingo, J.M.; Slingo, A.; Steenman-Clark, L. & Martin, G. 2009. U.K. HiGEM: The New U.K. High-Resolution Global Environment Model: Model Description and Basic Evaluation. Journal of Climate, 22(8): 1861-1896. Silva, G.A.M.; Ambrizzi, T. & Marengo, J.A. 2009. Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability. In ANNALES GEOPHYSICAL: ATMOSPHERES, HYDROSPHERES AND SPACE SCIENCES, 27, 2, p. 645. Trenberth, K.E.; Fasullo, J.T. & Shephered, T.G. 2015. Attribution of climate extreme events. Nature Climate Change, 5(8): 725-730. Uvo, C.R.B. & Nobre, C.A. 1989. A Zona de Convergência Intertropical (ZCIT) e a precipitação no norte do Nordeste do Brasil. Parte I: A Posição da ZCIT no Atlântico Equatorial. Climanalise, 4(07): 34 – 40. Vera, C.; Silvestri, G.; Liebmann, B & González, P. 2006. Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophysical Research Letter, 33:L13707. Wehner, M.F. 2004. Predicted twenty-first-century changes in seasonal extreme precipitation events in the parallel climate model, Journal of Climate, 17: 4281– 4290. Wilks, D.S. 1995. Statistical methods in the Atmospheric Sciences. Academic Press: New York, 468p. Xie, P. & Arkin, P.A. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78: 2539 - 2558.Copyright (c) 2020 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-12-28T02:11:19Zoai:www.revistas.ufrj.br:article/36002Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-12-28T02:11:19Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
title |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
spellingShingle |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual Custodio, Maria de Souza Extremos; Precipitação; Amazônia |
title_short |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
title_full |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
title_fullStr |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
title_full_unstemmed |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
title_sort |
Análise dos Eventos Extremos de Precipitação sobre a Amazônia em Modelos Climáticos de Alta Resolução - Parte I: Variabilidade Interanual |
author |
Custodio, Maria de Souza |
author_facet |
Custodio, Maria de Souza Gozzo, Luiz Felippe Machado, Jeferson Prietsch |
author_role |
author |
author2 |
Gozzo, Luiz Felippe Machado, Jeferson Prietsch |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Custodio, Maria de Souza Gozzo, Luiz Felippe Machado, Jeferson Prietsch |
dc.subject.por.fl_str_mv |
Extremos; Precipitação; Amazônia |
topic |
Extremos; Precipitação; Amazônia |
description |
O objetivo deste estudo foi avaliar o desempenho das simulações acopladas e atmosféricas dos modelos da família HadGEM1.2 em capturar o sinal da variabilidade interanual (IA) dos eventos extremos de precipitação sobre a região da Amazônia. As séries temporais de precipitação foram filtradas na escala interanual usando a transformada rápida de Fourier e os extremos foram calculados utilizando a técnica dos percentis. A análise das composições das anomalias interanuais de precipitação no verão e inverno austral, em geral, mostra que as simulações acopladas e atmosféricas representam satisfatoriamente o padrão espacial desses eventos. Para os extremos secos, o padrão espacial das simulações foi muito semelhante. De uma forma geral, o padrão espacial das simulações apresenta menor viés no extremo chuvoso. A análise dos limiares de extremos secos e úmidos mostra que, tanto na Amazônia Norte (AMN) como na Amazônia (AMZ), as simulações representam o sinal da escala IA, com destaque para a região AMZ onde o viés em relação ao CMAP (ClimatePrediction Center – Merged Analysis of Precipitation) é menor. Embora apresentando diferenças, tanto as simulações acopladas como as atmosféricas, apresentam padrão semelhante e portanto, representam o sinal da escala interanual nos subdomínios da Amazônia aqui analisados. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-18 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/36002 10.11137/2020_4_350_363 |
url |
https://revistas.ufrj.br/index.php/aigeo/article/view/36002 |
identifier_str_mv |
10.11137/2020_4_350_363 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufrj.br/index.php/aigeo/article/view/36002/22004 /*ref*/Cavalcanti, I.F.A.; Marengo, J.A.; Satyamurty, P.; Nobre, C.A.; Trosnikov, I.; Bonatti, J.P.; Manzi, A.O.; Tarasova, T.; Pezzi, L.P.; D'Almeida, C.; Sampaio, G.; Castro, C.C.; Sanches, M.B. & Camargo, H. 2002. Global climatological features in a simulation using the CPTEC– COLA AGCM. Journal of Climate, 15: 2965–2988. Carvalho, L.M.V.; Jones, C. & Liebmann, B. 2004. The South Atlantic Convergence Zone: intensity, form, persistence, relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17: 88–108. Custodio, M.S.; da Rocha, R.P. & Vidale, P.L. 2012. Analysis of precipitation climatology simulated by high resolution coupled global models over the South America. Hydrological Research Letters,6: 92–97. Custodio, M.S.; da Rocha, R.P.; Ambrizzi, T. & Vidale, P.L. 2016. Avaliação da climatologia na região Amazônica nos modelos da família HiGEM. Ciência e Natura, 38(2): 1054-1063. Custodio, M.S.; da Rocha, R.P.; Ambrizzi, T.; Vidale, P.L. & Demory, M-E. 2017. Impact of increased horizontal resolution in coupled and atmosphere-only models of the HadGEM1 family upon the climate patterns of South America. Climate dynamics, 48(9-10): 3341-3364. Druyan, L.M.; Fulakeza, M. & Lonergan, P. 2002. Dynamic downscaling of seasonal climate predictions over Brazil. Journal of Climate, 15: 3411-3426. Fisch, G.; Marengo, J.A. & Nobre, C.A. 1998. Uma revisão sobre o clima da Amazônia. Acta Amazonica, 28(2): 101-126. Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J. & Vidale, P.L. 2006. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models, Journal of Geophysical Research, 111: D06105. Gandu, A.D. & Silva Dias, P.L. 1998. Impact of tropical heat sources on the South America tropospheric upper circulation and subsidence. Journal of Geophysical Research, 03: 6001–6015. doi:10.1029/97JD03114. Grimm, A.M. 2003. The El Niño impact on the summer monsoon system in Brazil: regional process versus remote influences. Journal of Climate, 16: 263-280. Johns, T.C.; Durman, C.F.; Banks, H.T.; Roberts, M.J.; McLaren, A.J.; Ridley, J.K.; Senior, C.A.; Williams, K.D.; Jones, A.; Rickard, G.J.; Cusack, S.; Ingram, W.J.; Crucifix, M.; Sexton, D.M.H.; Joshi, M.M.; Dong, B-W.; Spencer, H.; Hill, R.S.R.; Gregory, J.M.; Keen, A.B.; Pardaens, A.K.; Lowe, J.A.; Bodas-Salcedo, A.; Stark, S. & Searl, Y.2006. The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations. Journal of Climate, 19(7):1327-1353. Kodama, Y-M. 1992. Large-scale common features of sub-tropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones. Journal of the Meteorological Societyof Japan, 70: 813-835. Kousky, V.E. 1985. Atmospheric circulation changes associated with rainfall anomalies over Tropical Brazil. Monthly Weather Review, 113: 120-128. Li, J-L.F.; Martin, K.; Farrara, J.D. & Mechoso, C.R. 2002. The impact of stratocumulus cloud radiative properties on surface heat fluxes simulated with a general circulation model. Monthly Weather Review, 130:1433–1441. Liebmann, B.; Kiladis, G.N.; Vera, C.S.; Saulo, A.C. & Carvalho, L.M.V. 2004. Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. Journal of Climate, 17: 3829–3842. Marengo, J.A.; Soares, W.R.; Saulo, C. & Nicolini, M. 2004. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. Journal of Climate, 17: 2261-2280. Martin, G.M.; Ringer, M.A.; Pope, V.D.; Jones, A.; Dearden, C. & Hinton, T.J. 2006. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. Journal of Climate, 19: 1274–1301. Nobre, C.A.; Marengo, J.A & Artaxo, P. 2009. Understanding the Climate of Amazonia: Progress From LBA. In: KELLER, M.; BUSTAMANTE, M.; GASH, J. & SILVA DIAS (orgs.). Amazonia and Global Change. Geophysical Monograph Series, vol. 186. Washington, D.C.: American Geophysical Union Books, 145-147. Nobre, P.; Siqueira, L.; Almeida, R.; Malagutti, M.; Giarolla, E.; Castelão, G.P.; Bottino, M.J.; Kubota, P.; Figueroa, S.N.; Costa, M.C.; Baptista, M.; Irber, L. & Marcondes, G.G. 2013 Climate simulation and change in the Brazilian climate model. Journal of Climate 26: 6716–6732. Planton, S.; Déqué, M.; Chauvin, F. & Terray, L. 2008. Expected impacts of climate change on extreme climate events. Comptes Rendus Geoscience, 340(9-10): 564-574. Samanta, D.; Karnauskas, K.B. & Goodkin, N.F. (2019). Tropical Pacific SST and ITCZ biases in climate models: Double trouble for future rainfall projections? Geophysical Research Letters, 46: 2242– 2252. https://doi.org/10.1029/2018GL081363. Satyamurty, P.; Costa, C.P.W. & Manzi, A.O. 2013. Moisture source for the Amazon Basin: a study of contrasting years. Theoretical and Applied Climatology, 111(1-2):195-209. Seth, A.; Rojas, M. & Rauscher, S.A. 2010. CMIP3 projected changes in the annual cycle of the South American Monsoon. Climate Change, 98(3–4):331. Seluchi, M.E.; Saulo, A.C.; Nicolini, M. & Satyamurty,P. 2003. The Northwestern Argentinean Low: a study of two typical events. Monthly Weather Review, 131: 2361-2378. Shaffrey, L.C.; Stevens, I.; Norton, W.A.; Roberts, M.J.; Vidale, P.L.; Harle, J.D.; Jrrar, A.; Stevens, D.P.; Woodage, M.J.; Demory, M.; Donners, J.; Clark, D.B.; Clayton, A.; Cole, J.W.; Wilson, S.; Connolley, W.M.; Davies, T.M.; Iwi, A.; Johns, T.C.; King, J.C.; New, A.L.; Slingo, J.M.; Slingo, A.; Steenman-Clark, L. & Martin, G. 2009. U.K. HiGEM: The New U.K. High-Resolution Global Environment Model: Model Description and Basic Evaluation. Journal of Climate, 22(8): 1861-1896. Silva, G.A.M.; Ambrizzi, T. & Marengo, J.A. 2009. Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability. In ANNALES GEOPHYSICAL: ATMOSPHERES, HYDROSPHERES AND SPACE SCIENCES, 27, 2, p. 645. Trenberth, K.E.; Fasullo, J.T. & Shephered, T.G. 2015. Attribution of climate extreme events. Nature Climate Change, 5(8): 725-730. Uvo, C.R.B. & Nobre, C.A. 1989. A Zona de Convergência Intertropical (ZCIT) e a precipitação no norte do Nordeste do Brasil. Parte I: A Posição da ZCIT no Atlântico Equatorial. Climanalise, 4(07): 34 – 40. Vera, C.; Silvestri, G.; Liebmann, B & González, P. 2006. Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophysical Research Letter, 33:L13707. Wehner, M.F. 2004. Predicted twenty-first-century changes in seasonal extreme precipitation events in the parallel climate model, Journal of Climate, 17: 4281– 4290. Wilks, D.S. 1995. Statistical methods in the Atmospheric Sciences. Academic Press: New York, 468p. Xie, P. & Arkin, P.A. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78: 2539 - 2558. |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Anuário do Instituto de Geociências http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro |
dc.source.none.fl_str_mv |
Anuário do Instituto de Geociências; Vol 43, No 4 (2020); 350_363 Anuário do Instituto de Geociências; Vol 43, No 4 (2020); 350_363 1982-3908 0101-9759 reponame:Anuário do Instituto de Geociências (Online) instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Anuário do Instituto de Geociências (Online) |
collection |
Anuário do Instituto de Geociências (Online) |
repository.name.fl_str_mv |
Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
anuario@igeo.ufrj.br|| |
_version_ |
1797053545021702144 |