Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae

Detalhes bibliográficos
Autor(a) principal: Alves, Everton Fernando
Data de Publicação: 2021
Outros Autores: Machado, Marcio Fraiberg
Tipo de documento: Artigo
Idioma: por
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/37908
Resumo: Milhares de fósseis de aves primitivas e diversificadasda Era Mesozoica e Cenozoica têm sido descobertos ao redor do mundo. Destes, centenas de estudos encontraram preservação excepcional de biomateriais mineralizados, permitindo ampliar o conhecimento acerca da sua ecologia e evolução. Porém, o clado Avialae apresenta dados escassos a respeito de achados de biomateriais não mineralizados e os que já foram identificados estão dispersos na literatura, associando a ideia das descobertas a fenômenos isolados. Este trabalho apresenta uma revisão da literatura publicada nas últimas duas décadas, com o fim de compreender melhor a frequência dos achados de biomateriais não mineralizados em fósseis do clado Avialae. Os resultados identificaram 12 artigos descrevendo biocomponentes originais para representantes de Anchiornithinae, Confuciusornithidae, Enantiornithes e Euornithes. Destes, as moléculas de proteínas (50%) e melaninas (41,7%) apresentaram maior frequência de achados. Em geral, embora os dados para os grupos não se mostrem taxonomicamente abrangentes, houve ampla distribuição geográfica no globo relativa a bioquímicos originais nas rochas mesozoicas e cenozoicas. No entanto, acredita-se que a frequência é subnotificada e, a partirdo surgimento de novas tecnologias, a previsão é de que maior quantidade de biomateriais orgânicos seja identificada nos fósseis.
id UFRJ-21_ceee5e77a2d6500485e649eabc1607f6
oai_identifier_str oai:www.revistas.ufrj.br:article/37908
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado AvialaeAves fósseis; Paleontologia Molecular; Moléculas orgânicasMilhares de fósseis de aves primitivas e diversificadasda Era Mesozoica e Cenozoica têm sido descobertos ao redor do mundo. Destes, centenas de estudos encontraram preservação excepcional de biomateriais mineralizados, permitindo ampliar o conhecimento acerca da sua ecologia e evolução. Porém, o clado Avialae apresenta dados escassos a respeito de achados de biomateriais não mineralizados e os que já foram identificados estão dispersos na literatura, associando a ideia das descobertas a fenômenos isolados. Este trabalho apresenta uma revisão da literatura publicada nas últimas duas décadas, com o fim de compreender melhor a frequência dos achados de biomateriais não mineralizados em fósseis do clado Avialae. Os resultados identificaram 12 artigos descrevendo biocomponentes originais para representantes de Anchiornithinae, Confuciusornithidae, Enantiornithes e Euornithes. Destes, as moléculas de proteínas (50%) e melaninas (41,7%) apresentaram maior frequência de achados. Em geral, embora os dados para os grupos não se mostrem taxonomicamente abrangentes, houve ampla distribuição geográfica no globo relativa a bioquímicos originais nas rochas mesozoicas e cenozoicas. No entanto, acredita-se que a frequência é subnotificada e, a partirdo surgimento de novas tecnologias, a previsão é de que maior quantidade de biomateriais orgânicos seja identificada nos fósseis.Universidade Federal do Rio de JaneiroAlves, Everton FernandoMachado, Marcio Fraiberg2021-06-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3790810.11137/1982-3908_2021_44_37908Anuário do Instituto de Geociências; Vol 44 (2021)Anuário do Instituto de Geociências; Vol 44 (2021)1982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJporhttps://revistas.ufrj.br/index.php/aigeo/article/view/37908/pdf/*ref*/Alves, E.F. & Machado, M.F. 2020,‘Perspectivas atuais sobre tecidos moles não mineralizados em fósseis de dinossauros não avianos’, Terrae Didatica, vol. 160, p. e020028. https://doi.org/10.20396/td.v16i0.8659539/*ref*/Alves, E.F. & Machado, M.F. 2021a,‘Proposta de Plano de Aula sobre Paleontologia Molecular para inserção em disciplina de Paleontologia de cursos de graduação em Ciências Biológicas’, Pesquisa e Ensino em Ciências Exatas e da Natureza, vol. 5, p. e1695. http://dx.doi.org/10.29215/pecen.v5i0.1695/*ref*/Alves, E.F. & Machado, M.F. 2021b,‘Frequência de preservação de biomateriais não mineralizados no registro fóssil de répteis mesozoicos: uma abordagem sobre pterossauros e répteis marinhos’, Brazilian Journal of Development, v. 7, n. 5, pp. 44797-44821. https://doi.org/10.34117/bjdv7n5-076/*ref*/Agnolin, F.L., Motta, M.J., Egli, F.B., Lo Coco, G. & Novas, F.E. 2019,‘Paravian Phylogeny and the Dinosaur-Bird Transition: An Overview’, Frontiers in Earth Science, vol. 6, p. 252. https://doi.org/10.3389/feart.2018.00252/*ref*/Avci, R., Schweitzer, M.H., Boyd, R.D., Wittmeyer, J.L., Terán Arce, F. & Calvo, J.O. 2005,‘Preservation of bone collagen from the late Cretaceous period studied by immunological techniques and atomic force microscopy’, Langmuir: the ACS journal of surfaces and colloids, vol. 21, no. 8, pp. 3584–3590. https://doi.org/10.1021/la047682e/*ref*/Bailleul, A.M., O'Connor, J., Zhang, S., Li, Z., Wang, Q., Lamanna, M.C., Zhu, X. & Zhou, Z. 2019,‘An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone’, Nature communications, vol. 10, no. 1, p. 1275. https://doi.org/10.1038/s41467-019-09259-x/*ref*/Bailleul, A.M., O'Connor, J., Li, Z., Wu, Q., Zhao, T., Monleon, M.A.M., Wang, M. & Zheng, X. 2020,‘Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses’, Communications biology, vol. 3, no. 1, p. 399. https://doi.org/10.1038/s42003-020-01131-9/*ref*/Barden, H.E., Wogelius, R.A., Li, D., Manning, P.L., Edwards, N.P. & van Dongen, B.E. 2011,‘Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird’, Gansus yumenensis. PloS one, vol. 6, no. 10, p. e25494. https://doi.org/10.1371/journal.pone.0025494/*ref*/Benson, R.B. & Choiniere, J.N. 2013,‘Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds’, Proceedings. Biological sciences, vol. 280, no. 1768, p. 20131780. https://doi.org/10.1098/rspb.2013.1780/*ref*/Bergmann, U., Morton, R.W., Manning, P.L., Sellers, W.I., Farrar, S., Huntley, K.G., Wogelius, R.A. & Larson, P. 2010,‘Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging’, Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no.20, pp. 9060–9065. https://doi.org/10.1073/pnas.1001569107/*ref*/Burke, A.C. & Feduccia, A. 1997,‘Developmental Patterns and the Identification of Homologies in the Avian Hand’, Science, vol. 278, no. 5338, pp.666-668. https://doi.org/10.1126/science.278.5338.666/*ref*/Carney, R.M., Vinther, J., Shawkey, M.D., D'Alba, L. & Ackermann, J. 2012,‘New evidence on the colour and nature of the isolated Archaeopteryx feather’, Nature communications, vol. 3, p. 637. https://doi.org/10.1038/ncomms1642/*ref*/Chiappe, L.M., Ji, S-A., Ji, Q. & Norell, M. A. 1999,‘Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China’, Bulletin of the American museum of Natural History, vol. 242, pp. 1-89. https://doi.org/10.1093/auk/117.3.836/*ref*/Chiappe, L.M. & Walker, C.A. 2002,‘Skeletal morphology and systematics of Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes)’ in Chiappe, L.M. & Witmer, L. M. (eds), Mesozoic birds: above the heads of dinosaurs, University of California Press, Berkeley, pp. 240-267./*ref*/Clarke, J., Ksepka, D., Salas-Gismondi, R., Altamirano, A., Shawkey, M., D'Alba, L., Vinther, J., DeVries, T. & Baby, P. 2010,‘Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers’, Science, vol. 330, no. 6006, pp. 954-957. https://doi.org/10.1126/science.1193604/*ref*/Colleary, C., Dolocan, A., Gardner, J., Singh, S., Wuttke, M., Rabenstein, R., Habersetzer, J., Schaal, S., Feseha, M., Clemens, M., Jacobs, B.F., Currano, E.D., Jacobs, L.L., Sylvestersen, R.L., Gabbott, S.E. & Vinther, J. 2015,‘Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils’, Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no.41, pp. 12592–12597. https://doi.org/10.1073/pnas.1509831112/*ref*/Demarchi, B., Hall, S., Roncal-Herrero, T., Freeman, C.L., Woolley, J., Crisp, M.K., Wilson, J., Fotakis, A., Fischer, R., Kessler, B.M., RakownikowJersie-Christensen, R., Olsen, J.V., Haile, J., Thomas, J., Marean, C.W., Parkington, J., Presslee, S., Lee-Thorp, J., Ditchfield, P., Hamilton, J.F., … & Collins, M.J. 2016,‘Protein sequences bound to mineral surfaces persist into deep time’, eLife, vol. 5, p. e17092. https://doi.org/10.7554/eLife.17092/*ref*/Egerton, V.M., Wogelius, R.A., Norell, M.A., Edwards, N.P., Sellers, W.I., Bergmann, U., Sokaras, D., Alonso-Mori, R., Ignatyev, K., van Veelen, A., Anné, J., van Dongen, B., Knoll, F. & Manning, P.L. 2015,‘The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird’, Journal of Analytical Atomic Spectrometry, vol. 30, pp.627–634. https://doi.org/10.1039/C4JA00395K/*ref*/Falk, A., O'Connor, J., Wang, M. & Zhou, Z. 2019,‘On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia)’, Diversity, vol. 11, no. 11, p. 212. https://doi.org/10.3390/d11110212/*ref*/Feduccia, A. & Nowicki, J. 2002,‘The hand of birds revealed by early ostrich embryos’, Die Naturwissenschaften, vol. 89, no.9, pp. 391–393. https://doi.org/10.1007/s00114-002-0350-y/*ref*/Feduccia, A., Lingham-Soliar, T. & Hinchliffe, J.R. 2005,‘Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence’, Journal of morphology, vol. 266, no. 2, pp. 125–166. https://doi.org/10.1002/jmor.10382/*ref*/Galván, I. & Solano, F. 2016,‘Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution’, International journal of molecular sciences, vol. 17, no. 4, p. 520. https://doi.org/10.3390/ijms17040520/*ref*/Hinchliffe, R. 1997,‘The Forward March of the Bird-Dinosaurs Halted?’, Science, vol. 278, no. 5338, pp. 596-597. https://doi.org/10.1126/science.278.5338.596/*ref*/Hu, H., O'Connor, J.K.& Zhou, Z. 2015,‘A New Species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in Early Birds’, PloS One, vol. 10, no. 6, p. e0126791. https://doi.org/10.1371/journal.pone.0126791/*ref*/International Commission on Stratigraphy. v2020/01, International Chronostratigraphic Chart. IUGS, acesso em 03 ago. 2020, <http://www.stratigraphy.org/ICSchart/ ChronostratChart2020-01.jpg>./*ref*/James, F.C. & Pourtless, J.A., IV. 2009,‘Cladistics and the origin of birds: A review and two new analyses’, Ornithological Monographs, vol. 66, pp.1–78. https://doi.org/10.1525/om.2009.66.1.1/*ref*/Ji, S-A., Atterholt, J., O'Connor, J.K., Lamanna, M.C., Harris, J.D., Li, D-Q., You, H-L. & Dodson, P. 2011,‘A new, three‐dimensionally preserved enantiornithine bird (Aves: Ornithothoraces) from Gansu Province, north‐western China’, Zoological Journal of the Linnean Society, vol. 162, no. 1, pp. 201–219. https://doi.org/10.1111/j.1096-3642.2010.00671.x/*ref*/Jiang, B., Zhao, T., Regnault, S., Edwards, N.P., Kohn, S.C., Li, Z., Wogelius, R.A., Benton, M.J. & Hutchinson, J.R. 2017,‘Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis’, Nature communications, vol. 8, p. 14779. https://doi.org/10.1038/ncomms14779 Lindgren, J., Sjövall, P., Carney, R.M., Cincotta, A., Uvdal, P., Hutcheson, S.W., Gustafsson, O., Lefèvre, U., Escuillié, F., Heimdal, J., Engdahl, A., Gren, J.A., Kear, B.P., Wakamatsu, K., Yans, J. & Godefroit, P. 2015,‘Molecular composition and ultrastructure of Jurassic paravian feathers’, Scientific reports, vol. 5, p. 13520. https://doi.org/10.1038/srep13520/*ref*/Lingham-Soliar, T., Feduccia, A. & Wang, X. 2007,‘A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres’, Proceedings. Biological sciences, vol. 274, no. 1620, pp. 1823-1829. https://doi.org/10.1098/rspb.2007.0352/*ref*/Manning, P.L., Edwards, N.P., Wogelius, R.A., Bergmann, U., Barden, H.R., Larson, P.L., Schwarz-Wings, D., Egerton, V.M., Sokaras, D., Mori, R.A. & Sellers, W.I. 2013,‘Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird’, Journal of Analytical Atomic Spectrometry, vol. 28, pp. 1024-1030. https://doi.org/10.1039/C3JA50077B/*ref*/Mayr, G. 2000,‘Tiny hoopoe-like birds from the Middle Eocene of Messel (Germany)’, The Auk, vol. 117, no. 4, pp. 964-970. https://doi.org/10.1093/auk/117.4.964/*ref*/Mayr, G. 2014,‘The origins of crown group birds: molecules and fossils’, Paleontology, vol. 57, no. 2, pp. 231-242. https://doi.org/10.1111/pala.12103/*ref*/Mayr, G. 2020,‘An updated review of the middle Eocene avifauna from the Geiseltal (Germany), with comments on the unusual taphonomy of some bird remains’, Geobios, vol. 62, pp. 45-59. https://doi.org/10.1016/j.geobios.2020.06.011/*ref*/McCoy, V.E., Gabbott, S.E., Penkman, K., Collins, M.J., Presslee, S., Holt, J., Grossman, H., Wang, B., Solórzano Kraemer, M.M., Delclòs, X. & Peñalver, E. 2019,‘Ancient amino acids from fossil feathers in amber’, Scientific reports, vol. 9, no. 1, p. 6420. https://doi.org/10.1038/s41598-019-42938-9/*ref*/Navalón, G., Marugán-Lobón, J., Chiappe, L.M., Luis Sanz, J. &Buscalioni, Á.D. 2015,‘Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight’, Scientific reports, vol. 5, p.14864. https://doi.org/10.1038/srep14864/*ref*/O’Connor, J.K., Zheng, X., Pan, Y., Wang, X., Wang, Y., Zhang, X. & Zhou, Z. 2020,‘New information on the plumage of Protopteryx (Aves: Enantiornithes) from a new specimen’, Cretaceous Research, vol. 116, p. 104577. https://doi.org/10.1016/j.cretres.2020.104577/*ref*/O'Reilly, S., Summons, R., Mayr, G. & Vinther, J. 2017,‘Preservation of uropygial gland lipids in a 48-million-year-old bird’, Proceedings. Biological sciences, vol. 284, no. 1865, p. 20171050. https://doi.org/10.1098/rspb.2017.1050/*ref*/Pan, Y., Zheng, W., Moyer, A.E., O'Connor, J.K., Wang, M., Zheng, X., Wang, X., Schroeter, E.R., Zhou, Z. & Schweitzer, M.H. 2016,‘Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis’, Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 49, pp. E7900–E7907. https://doi.org/10.1073/pnas.1617168113/*ref*/Pan, Y., Zheng, W., Sawyer, R.H., Pennington, M.W., Zheng, X., Wang, X., Wang, M., Hu, L., O'Connor, J., Zhao, T., Li, Z., Schroeter, E.R., Wu, F., Xu, X., Zhou, Z. & Schweitzer, M.H. 2019,‘The molecular evolution of feathers with direct evidence from fossils’, Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no.8, pp. 3018–3023. https://doi.org/10.1073/pnas.1815703116/*ref*/Pei, R., Li, Q., Meng, Q, Norell, M.A. & Gao, K-Q. 2017,‘New Specimens of Anchiornishuxleyi (Theropoda: Paraves) from the Late Jurassic of Northeastern China’, Bulletin of the American Museum of Natural History, vol. 411, pp. 1-67. https://doi.org/10.1206/0003-0090-411.1.1/*ref*/Pei, R., Pittman, M., Goloboff, P.A., Dececchi, T.A., Habib, M.B., Kaye, T.G., Larsson, H., Norell, M.A., Brusatte, S.L. & Xu, X. 2020,‘Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds’, Current biology, vol. 30, pp. 1-14. https://doi.org/10.1016/j.cub.2020.06.105/*ref*/Peteya, J.A., Clarke, J.A., Li, Q., Gao, K.-Q. & Shawkey, M.D. 2016,‘The plumage and colouration of an enantiornithine bird from the early cretaceous of china’, Palaeontology, vol. 60, no. 1, pp. 55–71. https://doi.org/10.1111/pala.12270/*ref*/Quick, D.E. & Ruben, J.A. 2009,‘Cardio-pulmonary anatomy in theropod dinosaurs: Implications from extant archosaurs’, Journal of morphology, vol. 270, no. 10, pp. 1232–1246. https://doi.org/10.1002/jmor.10752/*ref*/Rauhut, O.W., Tischlinger, H. & Foth, C. 2019,‘A non-archaeopterygidavialantheropod from the Late Jurassic of southern Germany’, eLife, vol. 8, p. e43789. https://doi.org/10.7554/eLife.43789/*ref*/Reest, A. J. & Currie, P. J. 2020,‘Preservation frequency of tissue-like structures in vertebrate remains from the upper Campanian of Alberta: Dinosaur Park Formation’, Cretaceous Research, vol. 109, p. 104370. https://doi.org/10.1016/j.cretres.2019.104370/*ref*/Rossi, V., McNamara, M.E., Webb, S.M., Ito, S. & Wakamatsu, K. 2019,‘Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates’, Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 36, pp. 17880–17889. https://doi.org/10.1073/pnas.1820285116/*ref*/Ruben J. 2010,‘Paleobiology and the origins of avian flight’, Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2733–2734. https://doi.org/10.1073/pnas.0915099107/*ref*/Ruben, J. 2017,‘Avian Evolution: The Fossil Record of Birds and Its Paleobiological Significance’, The Auk: Ornithological Advances, vol. 134, no. 4, pp. 925-926. https://doi.org/10.1642/AUK-17-117.1/*ref*/Schweitzer, M.H., Watt, J.A., Avci, R., Forster, C.A., Krause, D.W., Knapp, L., Rogers, R. R., Beech, I. & Marshall, M. 1999,‘Keratin immunoreactivity in the Late Cretaceous bird Rahonavisostromi’, Journal of Vertebrate Paleontology, vol. 19, no. 4, pp. 712–722. https://doi.org/10.1080/02724634.1999.10011183/*ref*/Schweitzer, M.H. 2003,‘Reviews and Previews: The Future of Molecular Biology’, Palaeontologia Electronica, vol. 5, no.2, editorial 2, pp. 1-11./*ref*/Schweitzer, M.H. 2004,‘Molecular paleontology: some current advances and problems’, Annales de Paléontologie, vol. 90, no. 2, pp. 81–102. https://doi.org/10.1016/j.annpal.2004.02.001/*ref*/Schweitzer, MH. 2011,‘Soft Tissue Preservation in Terrestrial Mesozoic Vertebrates’, Annual Review of Earth and Planetary Sciences, vol. 39, pp. 187-216. https://doi.org/10.1146/annurev-earth-040610-133502/*ref*/Slack, K.E., Jones, C.M., Ando, T., Harrison, G.L., Fordyce, R.E., Arnason, U. & Penny, D. 2006,‘Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution’, Molecular biology and evolution, vol. 23, no. 6, pp. 1144–1155. https://doi.org/10.1093/molbev/msj124/*ref*/Thomas, B.D. 2018,‘Collagen remnants in ancient bone’, PhD Thesis, University of Liverpool./*ref*/Thomas, B. & Taylor, S. 2019,‘Proteomes of the past: the pursuit of proteins in Paleontology’, Ex¬pert Review of Proteomics, vol. 16, no. 11-12, pp. 881-895. https://doi.org/10.1080/14789450.2019.1700114/*ref*/Turner, A.H., Makovicky, P.J. & Norell, M.A. 2012,‘A review of dromaeosaurid systematics and paravian phylogeny’, Bulletin of the American Museum of Natural History, vol. 371, pp. 1–206. https://doi.org/10.1206/748.1/*ref*/Vinther, J., Briggs, D.E., Clarke, J., Mayr, G. & Prum, R.O. 2010,‘Structural coloration in a fossil feather’, Biology letters, vol. 6, no. 1, pp. 128–131. https://doi.org/10.1098/rsbl.2009.0524/*ref*/Walker, C. 1981,‘New subclass of birds from the Cretaceous of South America’, Nature, vol. 292, pp. 51–53. https://doi.org/10.1038/292051a0/*ref*/Wogelius, R.A., Manning, P.L., Barden, H.E., Edwards, N.P., Webb, S.M., Sellers, W.I., Taylor, K.G., Larson, P.L., Dodson, P., You, H., Da-qing, L. & Bergmann, U. 2011,‘Trace metals as biomarkers for eumelanin pigment in the fossil record’, Science, vol. 333, no. 6049, pp. 1622–1626. https://doi.org/10.1126/science.1205748/*ref*/Xing, L., McKellar, R.C., Wang, M., Bai, M., O'Connor, J.K., Benton, M.J., Zhang, J., Wang, Y., Tseng, K., Lockley, M.G., Li, G., Zhang, W. & Xu, X. 2016,‘Mummified precocial bird wings in mid-Cretaceous Burmese amber’, Nature communications, vol. 7, p. 12089. https://doi.org/10.1038/ncomms12089/*ref*/Xing, L., O'Connor, J.K., McKellar, R.C., Chiappe, L.M., Tseng, K., Li, G. & Bai, M. 2017,‘A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage’, Gondwana Research, vol. 49, pp. 264-277. https://doi.org/10.1016/j.gr.2017.06.001/*ref*/Xing, L., O'Connor, J.K., McKellar, R.C., Chiappe, L.M., Bai, M., Tseng, K., Yang, H., Fang, J. & Li, G. 2018a,‘A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation’, Science Bulletin, vol. 63, no. 4, pp. 235-243. https://doi.org/10.1016/j.scib.2018.01.019/*ref*/Xing, L., Cockx, P., McKellar, R.C. & O'Connor, J. 2018b,‘Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure’, Journal of Palaeogeography, vol. 7, p. 13. https://doi.org/10.1186/s42501-018-0014-2/*ref*/Xing, L., McKellar, R.C., O'Connor, J.K., Niu, K. & Mai, H. 2019,‘A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber’, Scientific reports, vol. 9, no. 1, p. 15513. https://doi.org/10.1038/s41598-019-51929-9/*ref*/Xing, L., McKellar, R.C. &O'Connor, J.K. 2020a,‘An unusually large bird wing in mid-Cretaceous Burmese amber’, Cretaceous Research, vol. 110, p. 104412. https://doi.org/10.1016/j.cretres.2020.104412/*ref*/Xing, L., O’Connor, J.K., Niu, K., Cockx, P., Mai, H. & McKellar, R.C. 2020b,‘A New Enantiornithine (Aves) Preserved in Mid-Cretaceous Burmese Amber Contributes to Growing Diversity of Cretaceous Plumage Patterns’, Frontiers in Earth Science, vol. 8, p. 264. https://doi.org/10.3389/feart.2020.00264/*ref*/Xing, L., Cockx, P., O'Connor, J.K. &McKellar, R.C. 2020c,‘A newly discovered enantiornithine foot preserved in mid-Cretaceous Burmese amber’, Palaeoentomology, vol. 3, no. 2, pp.212-219. https://doi.org/10.11646/palaeoentomology.3.2.11/*ref*/Zheng, X., O'Connor, J.K., Wang, X., Pan, Y., Wang, Y., Wang, M. & Zhou, Z. 2017,‘Preservação excepcional de tecido mole em um novo espécime de Eoconfuciusornis e suas implicações biológicas’, National Science Review, vol. 4, no. 3, pp. 441–452. https://doi.org/10.1093/nsr/nwx004Copyright (c) 2021 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2021-06-12T11:47:28Zoai:www.revistas.ufrj.br:article/37908Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2021-06-12T11:47:28Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
title Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
spellingShingle Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
Alves, Everton Fernando
Aves fósseis; Paleontologia Molecular; Moléculas orgânicas
title_short Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
title_full Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
title_fullStr Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
title_full_unstemmed Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
title_sort Preservação Excepcional de Biomateriais Não Mineralizados em Fósseis do Clado Avialae
author Alves, Everton Fernando
author_facet Alves, Everton Fernando
Machado, Marcio Fraiberg
author_role author
author2 Machado, Marcio Fraiberg
author2_role author
dc.contributor.none.fl_str_mv
dc.contributor.author.fl_str_mv Alves, Everton Fernando
Machado, Marcio Fraiberg
dc.subject.por.fl_str_mv Aves fósseis; Paleontologia Molecular; Moléculas orgânicas
topic Aves fósseis; Paleontologia Molecular; Moléculas orgânicas
description Milhares de fósseis de aves primitivas e diversificadasda Era Mesozoica e Cenozoica têm sido descobertos ao redor do mundo. Destes, centenas de estudos encontraram preservação excepcional de biomateriais mineralizados, permitindo ampliar o conhecimento acerca da sua ecologia e evolução. Porém, o clado Avialae apresenta dados escassos a respeito de achados de biomateriais não mineralizados e os que já foram identificados estão dispersos na literatura, associando a ideia das descobertas a fenômenos isolados. Este trabalho apresenta uma revisão da literatura publicada nas últimas duas décadas, com o fim de compreender melhor a frequência dos achados de biomateriais não mineralizados em fósseis do clado Avialae. Os resultados identificaram 12 artigos descrevendo biocomponentes originais para representantes de Anchiornithinae, Confuciusornithidae, Enantiornithes e Euornithes. Destes, as moléculas de proteínas (50%) e melaninas (41,7%) apresentaram maior frequência de achados. Em geral, embora os dados para os grupos não se mostrem taxonomicamente abrangentes, houve ampla distribuição geográfica no globo relativa a bioquímicos originais nas rochas mesozoicas e cenozoicas. No entanto, acredita-se que a frequência é subnotificada e, a partirdo surgimento de novas tecnologias, a previsão é de que maior quantidade de biomateriais orgânicos seja identificada nos fósseis.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-11
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/37908
10.11137/1982-3908_2021_44_37908
url https://revistas.ufrj.br/index.php/aigeo/article/view/37908
identifier_str_mv 10.11137/1982-3908_2021_44_37908
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/37908/pdf
/*ref*/Alves, E.F. & Machado, M.F. 2020,‘Perspectivas atuais sobre tecidos moles não mineralizados em fósseis de dinossauros não avianos’, Terrae Didatica, vol. 160, p. e020028. https://doi.org/10.20396/td.v16i0.8659539
/*ref*/Alves, E.F. & Machado, M.F. 2021a,‘Proposta de Plano de Aula sobre Paleontologia Molecular para inserção em disciplina de Paleontologia de cursos de graduação em Ciências Biológicas’, Pesquisa e Ensino em Ciências Exatas e da Natureza, vol. 5, p. e1695. http://dx.doi.org/10.29215/pecen.v5i0.1695
/*ref*/Alves, E.F. & Machado, M.F. 2021b,‘Frequência de preservação de biomateriais não mineralizados no registro fóssil de répteis mesozoicos: uma abordagem sobre pterossauros e répteis marinhos’, Brazilian Journal of Development, v. 7, n. 5, pp. 44797-44821. https://doi.org/10.34117/bjdv7n5-076
/*ref*/Agnolin, F.L., Motta, M.J., Egli, F.B., Lo Coco, G. & Novas, F.E. 2019,‘Paravian Phylogeny and the Dinosaur-Bird Transition: An Overview’, Frontiers in Earth Science, vol. 6, p. 252. https://doi.org/10.3389/feart.2018.00252
/*ref*/Avci, R., Schweitzer, M.H., Boyd, R.D., Wittmeyer, J.L., Terán Arce, F. & Calvo, J.O. 2005,‘Preservation of bone collagen from the late Cretaceous period studied by immunological techniques and atomic force microscopy’, Langmuir: the ACS journal of surfaces and colloids, vol. 21, no. 8, pp. 3584–3590. https://doi.org/10.1021/la047682e
/*ref*/Bailleul, A.M., O'Connor, J., Zhang, S., Li, Z., Wang, Q., Lamanna, M.C., Zhu, X. & Zhou, Z. 2019,‘An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone’, Nature communications, vol. 10, no. 1, p. 1275. https://doi.org/10.1038/s41467-019-09259-x
/*ref*/Bailleul, A.M., O'Connor, J., Li, Z., Wu, Q., Zhao, T., Monleon, M.A.M., Wang, M. & Zheng, X. 2020,‘Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses’, Communications biology, vol. 3, no. 1, p. 399. https://doi.org/10.1038/s42003-020-01131-9
/*ref*/Barden, H.E., Wogelius, R.A., Li, D., Manning, P.L., Edwards, N.P. & van Dongen, B.E. 2011,‘Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird’, Gansus yumenensis. PloS one, vol. 6, no. 10, p. e25494. https://doi.org/10.1371/journal.pone.0025494
/*ref*/Benson, R.B. & Choiniere, J.N. 2013,‘Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds’, Proceedings. Biological sciences, vol. 280, no. 1768, p. 20131780. https://doi.org/10.1098/rspb.2013.1780
/*ref*/Bergmann, U., Morton, R.W., Manning, P.L., Sellers, W.I., Farrar, S., Huntley, K.G., Wogelius, R.A. & Larson, P. 2010,‘Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging’, Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no.20, pp. 9060–9065. https://doi.org/10.1073/pnas.1001569107
/*ref*/Burke, A.C. & Feduccia, A. 1997,‘Developmental Patterns and the Identification of Homologies in the Avian Hand’, Science, vol. 278, no. 5338, pp.666-668. https://doi.org/10.1126/science.278.5338.666
/*ref*/Carney, R.M., Vinther, J., Shawkey, M.D., D'Alba, L. & Ackermann, J. 2012,‘New evidence on the colour and nature of the isolated Archaeopteryx feather’, Nature communications, vol. 3, p. 637. https://doi.org/10.1038/ncomms1642
/*ref*/Chiappe, L.M., Ji, S-A., Ji, Q. & Norell, M. A. 1999,‘Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China’, Bulletin of the American museum of Natural History, vol. 242, pp. 1-89. https://doi.org/10.1093/auk/117.3.836
/*ref*/Chiappe, L.M. & Walker, C.A. 2002,‘Skeletal morphology and systematics of Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes)’ in Chiappe, L.M. & Witmer, L. M. (eds), Mesozoic birds: above the heads of dinosaurs, University of California Press, Berkeley, pp. 240-267.
/*ref*/Clarke, J., Ksepka, D., Salas-Gismondi, R., Altamirano, A., Shawkey, M., D'Alba, L., Vinther, J., DeVries, T. & Baby, P. 2010,‘Fossil Evidence for Evolution of the Shape and Color of Penguin Feathers’, Science, vol. 330, no. 6006, pp. 954-957. https://doi.org/10.1126/science.1193604
/*ref*/Colleary, C., Dolocan, A., Gardner, J., Singh, S., Wuttke, M., Rabenstein, R., Habersetzer, J., Schaal, S., Feseha, M., Clemens, M., Jacobs, B.F., Currano, E.D., Jacobs, L.L., Sylvestersen, R.L., Gabbott, S.E. & Vinther, J. 2015,‘Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils’, Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no.41, pp. 12592–12597. https://doi.org/10.1073/pnas.1509831112
/*ref*/Demarchi, B., Hall, S., Roncal-Herrero, T., Freeman, C.L., Woolley, J., Crisp, M.K., Wilson, J., Fotakis, A., Fischer, R., Kessler, B.M., RakownikowJersie-Christensen, R., Olsen, J.V., Haile, J., Thomas, J., Marean, C.W., Parkington, J., Presslee, S., Lee-Thorp, J., Ditchfield, P., Hamilton, J.F., … & Collins, M.J. 2016,‘Protein sequences bound to mineral surfaces persist into deep time’, eLife, vol. 5, p. e17092. https://doi.org/10.7554/eLife.17092
/*ref*/Egerton, V.M., Wogelius, R.A., Norell, M.A., Edwards, N.P., Sellers, W.I., Bergmann, U., Sokaras, D., Alonso-Mori, R., Ignatyev, K., van Veelen, A., Anné, J., van Dongen, B., Knoll, F. & Manning, P.L. 2015,‘The mapping and differentiation of biological and environmental elemental signatures in the fossil remains of a 50 million year old bird’, Journal of Analytical Atomic Spectrometry, vol. 30, pp.627–634. https://doi.org/10.1039/C4JA00395K
/*ref*/Falk, A., O'Connor, J., Wang, M. & Zhou, Z. 2019,‘On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia)’, Diversity, vol. 11, no. 11, p. 212. https://doi.org/10.3390/d11110212
/*ref*/Feduccia, A. & Nowicki, J. 2002,‘The hand of birds revealed by early ostrich embryos’, Die Naturwissenschaften, vol. 89, no.9, pp. 391–393. https://doi.org/10.1007/s00114-002-0350-y
/*ref*/Feduccia, A., Lingham-Soliar, T. & Hinchliffe, J.R. 2005,‘Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence’, Journal of morphology, vol. 266, no. 2, pp. 125–166. https://doi.org/10.1002/jmor.10382
/*ref*/Galván, I. & Solano, F. 2016,‘Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution’, International journal of molecular sciences, vol. 17, no. 4, p. 520. https://doi.org/10.3390/ijms17040520
/*ref*/Hinchliffe, R. 1997,‘The Forward March of the Bird-Dinosaurs Halted?’, Science, vol. 278, no. 5338, pp. 596-597. https://doi.org/10.1126/science.278.5338.596
/*ref*/Hu, H., O'Connor, J.K.& Zhou, Z. 2015,‘A New Species of Pengornithidae (Aves: Enantiornithes) from the Lower Cretaceous of China Suggests a Specialized Scansorial Habitat Previously Unknown in Early Birds’, PloS One, vol. 10, no. 6, p. e0126791. https://doi.org/10.1371/journal.pone.0126791
/*ref*/International Commission on Stratigraphy. v2020/01, International Chronostratigraphic Chart. IUGS, acesso em 03 ago. 2020, <http://www.stratigraphy.org/ICSchart/ ChronostratChart2020-01.jpg>.
/*ref*/James, F.C. & Pourtless, J.A., IV. 2009,‘Cladistics and the origin of birds: A review and two new analyses’, Ornithological Monographs, vol. 66, pp.1–78. https://doi.org/10.1525/om.2009.66.1.1
/*ref*/Ji, S-A., Atterholt, J., O'Connor, J.K., Lamanna, M.C., Harris, J.D., Li, D-Q., You, H-L. & Dodson, P. 2011,‘A new, three‐dimensionally preserved enantiornithine bird (Aves: Ornithothoraces) from Gansu Province, north‐western China’, Zoological Journal of the Linnean Society, vol. 162, no. 1, pp. 201–219. https://doi.org/10.1111/j.1096-3642.2010.00671.x
/*ref*/Jiang, B., Zhao, T., Regnault, S., Edwards, N.P., Kohn, S.C., Li, Z., Wogelius, R.A., Benton, M.J. & Hutchinson, J.R. 2017,‘Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis’, Nature communications, vol. 8, p. 14779. https://doi.org/10.1038/ncomms14779 Lindgren, J., Sjövall, P., Carney, R.M., Cincotta, A., Uvdal, P., Hutcheson, S.W., Gustafsson, O., Lefèvre, U., Escuillié, F., Heimdal, J., Engdahl, A., Gren, J.A., Kear, B.P., Wakamatsu, K., Yans, J. & Godefroit, P. 2015,‘Molecular composition and ultrastructure of Jurassic paravian feathers’, Scientific reports, vol. 5, p. 13520. https://doi.org/10.1038/srep13520
/*ref*/Lingham-Soliar, T., Feduccia, A. & Wang, X. 2007,‘A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres’, Proceedings. Biological sciences, vol. 274, no. 1620, pp. 1823-1829. https://doi.org/10.1098/rspb.2007.0352
/*ref*/Manning, P.L., Edwards, N.P., Wogelius, R.A., Bergmann, U., Barden, H.R., Larson, P.L., Schwarz-Wings, D., Egerton, V.M., Sokaras, D., Mori, R.A. & Sellers, W.I. 2013,‘Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird’, Journal of Analytical Atomic Spectrometry, vol. 28, pp. 1024-1030. https://doi.org/10.1039/C3JA50077B
/*ref*/Mayr, G. 2000,‘Tiny hoopoe-like birds from the Middle Eocene of Messel (Germany)’, The Auk, vol. 117, no. 4, pp. 964-970. https://doi.org/10.1093/auk/117.4.964
/*ref*/Mayr, G. 2014,‘The origins of crown group birds: molecules and fossils’, Paleontology, vol. 57, no. 2, pp. 231-242. https://doi.org/10.1111/pala.12103
/*ref*/Mayr, G. 2020,‘An updated review of the middle Eocene avifauna from the Geiseltal (Germany), with comments on the unusual taphonomy of some bird remains’, Geobios, vol. 62, pp. 45-59. https://doi.org/10.1016/j.geobios.2020.06.011
/*ref*/McCoy, V.E., Gabbott, S.E., Penkman, K., Collins, M.J., Presslee, S., Holt, J., Grossman, H., Wang, B., Solórzano Kraemer, M.M., Delclòs, X. & Peñalver, E. 2019,‘Ancient amino acids from fossil feathers in amber’, Scientific reports, vol. 9, no. 1, p. 6420. https://doi.org/10.1038/s41598-019-42938-9
/*ref*/Navalón, G., Marugán-Lobón, J., Chiappe, L.M., Luis Sanz, J. &Buscalioni, Á.D. 2015,‘Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight’, Scientific reports, vol. 5, p.14864. https://doi.org/10.1038/srep14864
/*ref*/O’Connor, J.K., Zheng, X., Pan, Y., Wang, X., Wang, Y., Zhang, X. & Zhou, Z. 2020,‘New information on the plumage of Protopteryx (Aves: Enantiornithes) from a new specimen’, Cretaceous Research, vol. 116, p. 104577. https://doi.org/10.1016/j.cretres.2020.104577
/*ref*/O'Reilly, S., Summons, R., Mayr, G. & Vinther, J. 2017,‘Preservation of uropygial gland lipids in a 48-million-year-old bird’, Proceedings. Biological sciences, vol. 284, no. 1865, p. 20171050. https://doi.org/10.1098/rspb.2017.1050
/*ref*/Pan, Y., Zheng, W., Moyer, A.E., O'Connor, J.K., Wang, M., Zheng, X., Wang, X., Schroeter, E.R., Zhou, Z. & Schweitzer, M.H. 2016,‘Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis’, Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 49, pp. E7900–E7907. https://doi.org/10.1073/pnas.1617168113
/*ref*/Pan, Y., Zheng, W., Sawyer, R.H., Pennington, M.W., Zheng, X., Wang, X., Wang, M., Hu, L., O'Connor, J., Zhao, T., Li, Z., Schroeter, E.R., Wu, F., Xu, X., Zhou, Z. & Schweitzer, M.H. 2019,‘The molecular evolution of feathers with direct evidence from fossils’, Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no.8, pp. 3018–3023. https://doi.org/10.1073/pnas.1815703116
/*ref*/Pei, R., Li, Q., Meng, Q, Norell, M.A. & Gao, K-Q. 2017,‘New Specimens of Anchiornishuxleyi (Theropoda: Paraves) from the Late Jurassic of Northeastern China’, Bulletin of the American Museum of Natural History, vol. 411, pp. 1-67. https://doi.org/10.1206/0003-0090-411.1.1
/*ref*/Pei, R., Pittman, M., Goloboff, P.A., Dececchi, T.A., Habib, M.B., Kaye, T.G., Larsson, H., Norell, M.A., Brusatte, S.L. & Xu, X. 2020,‘Potential for Powered Flight Neared by Most Close Avialan Relatives, but Few Crossed Its Thresholds’, Current biology, vol. 30, pp. 1-14. https://doi.org/10.1016/j.cub.2020.06.105
/*ref*/Peteya, J.A., Clarke, J.A., Li, Q., Gao, K.-Q. & Shawkey, M.D. 2016,‘The plumage and colouration of an enantiornithine bird from the early cretaceous of china’, Palaeontology, vol. 60, no. 1, pp. 55–71. https://doi.org/10.1111/pala.12270
/*ref*/Quick, D.E. & Ruben, J.A. 2009,‘Cardio-pulmonary anatomy in theropod dinosaurs: Implications from extant archosaurs’, Journal of morphology, vol. 270, no. 10, pp. 1232–1246. https://doi.org/10.1002/jmor.10752
/*ref*/Rauhut, O.W., Tischlinger, H. & Foth, C. 2019,‘A non-archaeopterygidavialantheropod from the Late Jurassic of southern Germany’, eLife, vol. 8, p. e43789. https://doi.org/10.7554/eLife.43789
/*ref*/Reest, A. J. & Currie, P. J. 2020,‘Preservation frequency of tissue-like structures in vertebrate remains from the upper Campanian of Alberta: Dinosaur Park Formation’, Cretaceous Research, vol. 109, p. 104370. https://doi.org/10.1016/j.cretres.2019.104370
/*ref*/Rossi, V., McNamara, M.E., Webb, S.M., Ito, S. & Wakamatsu, K. 2019,‘Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates’, Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 36, pp. 17880–17889. https://doi.org/10.1073/pnas.1820285116
/*ref*/Ruben J. 2010,‘Paleobiology and the origins of avian flight’, Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2733–2734. https://doi.org/10.1073/pnas.0915099107
/*ref*/Ruben, J. 2017,‘Avian Evolution: The Fossil Record of Birds and Its Paleobiological Significance’, The Auk: Ornithological Advances, vol. 134, no. 4, pp. 925-926. https://doi.org/10.1642/AUK-17-117.1
/*ref*/Schweitzer, M.H., Watt, J.A., Avci, R., Forster, C.A., Krause, D.W., Knapp, L., Rogers, R. R., Beech, I. & Marshall, M. 1999,‘Keratin immunoreactivity in the Late Cretaceous bird Rahonavisostromi’, Journal of Vertebrate Paleontology, vol. 19, no. 4, pp. 712–722. https://doi.org/10.1080/02724634.1999.10011183
/*ref*/Schweitzer, M.H. 2003,‘Reviews and Previews: The Future of Molecular Biology’, Palaeontologia Electronica, vol. 5, no.2, editorial 2, pp. 1-11.
/*ref*/Schweitzer, M.H. 2004,‘Molecular paleontology: some current advances and problems’, Annales de Paléontologie, vol. 90, no. 2, pp. 81–102. https://doi.org/10.1016/j.annpal.2004.02.001
/*ref*/Schweitzer, MH. 2011,‘Soft Tissue Preservation in Terrestrial Mesozoic Vertebrates’, Annual Review of Earth and Planetary Sciences, vol. 39, pp. 187-216. https://doi.org/10.1146/annurev-earth-040610-133502
/*ref*/Slack, K.E., Jones, C.M., Ando, T., Harrison, G.L., Fordyce, R.E., Arnason, U. & Penny, D. 2006,‘Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution’, Molecular biology and evolution, vol. 23, no. 6, pp. 1144–1155. https://doi.org/10.1093/molbev/msj124
/*ref*/Thomas, B.D. 2018,‘Collagen remnants in ancient bone’, PhD Thesis, University of Liverpool.
/*ref*/Thomas, B. & Taylor, S. 2019,‘Proteomes of the past: the pursuit of proteins in Paleontology’, Ex¬pert Review of Proteomics, vol. 16, no. 11-12, pp. 881-895. https://doi.org/10.1080/14789450.2019.1700114
/*ref*/Turner, A.H., Makovicky, P.J. & Norell, M.A. 2012,‘A review of dromaeosaurid systematics and paravian phylogeny’, Bulletin of the American Museum of Natural History, vol. 371, pp. 1–206. https://doi.org/10.1206/748.1
/*ref*/Vinther, J., Briggs, D.E., Clarke, J., Mayr, G. & Prum, R.O. 2010,‘Structural coloration in a fossil feather’, Biology letters, vol. 6, no. 1, pp. 128–131. https://doi.org/10.1098/rsbl.2009.0524
/*ref*/Walker, C. 1981,‘New subclass of birds from the Cretaceous of South America’, Nature, vol. 292, pp. 51–53. https://doi.org/10.1038/292051a0
/*ref*/Wogelius, R.A., Manning, P.L., Barden, H.E., Edwards, N.P., Webb, S.M., Sellers, W.I., Taylor, K.G., Larson, P.L., Dodson, P., You, H., Da-qing, L. & Bergmann, U. 2011,‘Trace metals as biomarkers for eumelanin pigment in the fossil record’, Science, vol. 333, no. 6049, pp. 1622–1626. https://doi.org/10.1126/science.1205748
/*ref*/Xing, L., McKellar, R.C., Wang, M., Bai, M., O'Connor, J.K., Benton, M.J., Zhang, J., Wang, Y., Tseng, K., Lockley, M.G., Li, G., Zhang, W. & Xu, X. 2016,‘Mummified precocial bird wings in mid-Cretaceous Burmese amber’, Nature communications, vol. 7, p. 12089. https://doi.org/10.1038/ncomms12089
/*ref*/Xing, L., O'Connor, J.K., McKellar, R.C., Chiappe, L.M., Tseng, K., Li, G. & Bai, M. 2017,‘A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage’, Gondwana Research, vol. 49, pp. 264-277. https://doi.org/10.1016/j.gr.2017.06.001
/*ref*/Xing, L., O'Connor, J.K., McKellar, R.C., Chiappe, L.M., Bai, M., Tseng, K., Yang, H., Fang, J. & Li, G. 2018a,‘A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation’, Science Bulletin, vol. 63, no. 4, pp. 235-243. https://doi.org/10.1016/j.scib.2018.01.019
/*ref*/Xing, L., Cockx, P., McKellar, R.C. & O'Connor, J. 2018b,‘Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure’, Journal of Palaeogeography, vol. 7, p. 13. https://doi.org/10.1186/s42501-018-0014-2
/*ref*/Xing, L., McKellar, R.C., O'Connor, J.K., Niu, K. & Mai, H. 2019,‘A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber’, Scientific reports, vol. 9, no. 1, p. 15513. https://doi.org/10.1038/s41598-019-51929-9
/*ref*/Xing, L., McKellar, R.C. &O'Connor, J.K. 2020a,‘An unusually large bird wing in mid-Cretaceous Burmese amber’, Cretaceous Research, vol. 110, p. 104412. https://doi.org/10.1016/j.cretres.2020.104412
/*ref*/Xing, L., O’Connor, J.K., Niu, K., Cockx, P., Mai, H. & McKellar, R.C. 2020b,‘A New Enantiornithine (Aves) Preserved in Mid-Cretaceous Burmese Amber Contributes to Growing Diversity of Cretaceous Plumage Patterns’, Frontiers in Earth Science, vol. 8, p. 264. https://doi.org/10.3389/feart.2020.00264
/*ref*/Xing, L., Cockx, P., O'Connor, J.K. &McKellar, R.C. 2020c,‘A newly discovered enantiornithine foot preserved in mid-Cretaceous Burmese amber’, Palaeoentomology, vol. 3, no. 2, pp.212-219. https://doi.org/10.11646/palaeoentomology.3.2.11
/*ref*/Zheng, X., O'Connor, J.K., Wang, X., Pan, Y., Wang, Y., Wang, M. & Zhou, Z. 2017,‘Preservação excepcional de tecido mole em um novo espécime de Eoconfuciusornis e suas implicações biológicas’, National Science Review, vol. 4, no. 3, pp. 441–452. https://doi.org/10.1093/nsr/nwx004
dc.rights.driver.fl_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 44 (2021)
Anuário do Instituto de Geociências; Vol 44 (2021)
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053540777066496