Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro

Detalhes bibliográficos
Autor(a) principal: Silva, Maria Leidinice da
Data de Publicação: 2020
Outros Autores: Lima, Kellen Carla, Oliveira, Cristiano Prestrelo de, Barbosa, Augusto Cesar Barros, Santos, Antônio Carlos Santana dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anuário do Instituto de Geociências (Online)
Texto Completo: https://revistas.ufrj.br/index.php/aigeo/article/view/36143
Resumo: O modelo global de previsão numérica de tempo e clima, Ocean Land Atmosphere Model, atualmente é considerado como o novo estado-da-arte em modelagem numérica devido a sua capacidade de representar fenômenos de escalas global e regional simultaneamente. Deste modo, a pesquisa tem como objetivo avaliar o desempenho deste modelo em relação ao melhor esquema de radiação (Chen ou Harrington) para representar a precipitação na área Setentrional do Nordeste do Brasil. Assim, o modelo foi configurado com uma grade global e outra grade mais refinada e centrada na América do Sul. A condição atmosférica inicial ocorreu para o dia 01 de janeiro de 1982 às 06 UTC, proveniente das Reanálises II do National Center for Environmental Prediction. O modelo foi integrado até 31 de dezembro de 2012 às 18 UTC. Para as condições de contorno inferior foram utilizados dados de Temperatura da Superfície do Mar obtidos da segunda versão do Optimum Interpolation Sea Surface Temperature. Os resultados das simulações, para os dois diferentes tipos de parametrizações de radiação, foram comparados com os dados de precipitação do ClimateResearch Unit Time-Series Version 3.22 para o período de 1982 a 2012. Os resultados das simulações mostraram que o modelo, para as duas parametrizações, conseguiu acompanhar a climatologia da precipitação ao longo do ciclo anual, mas subestimando as médias observadas. No trimestre junho-julho-agosto, o experimento com parametrização Harrington obteve melhor correlação (0,855). Por outro lado, para o trimestre março-abril-maio, o experimento com parametrização Chen apresentou maior correlação (0,842). Quanto aos erros de vieses, ambos os experimentos subestimaram a precipitação nos trimestres março-abrilmaio e junho-julho-agosto, em maior grau o experimento Chen, o qual superestimou os trimestres setembro-outubro-novembro e dezembro-janeiro-fevereiro. De acordo com o índice de eficiência, nenhum dos experimentos obteve boa precisão em comparação ao dado observacional. Em geral, os experimentos representaram os aspectos de grande escala, porém para obter melhorias significativas na estimativa de precipitação, faz-se necessário adotar grades de maior resolução espacial.
id UFRJ-21_e1983e1200816f13880bee3148850498
oai_identifier_str oai:www.revistas.ufrj.br:article/36143
network_acronym_str UFRJ-21
network_name_str Anuário do Instituto de Geociências (Online)
repository_id_str
spelling Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional BrasileiroSimulação global; Desempenho; Esquemas de radiaçãoO modelo global de previsão numérica de tempo e clima, Ocean Land Atmosphere Model, atualmente é considerado como o novo estado-da-arte em modelagem numérica devido a sua capacidade de representar fenômenos de escalas global e regional simultaneamente. Deste modo, a pesquisa tem como objetivo avaliar o desempenho deste modelo em relação ao melhor esquema de radiação (Chen ou Harrington) para representar a precipitação na área Setentrional do Nordeste do Brasil. Assim, o modelo foi configurado com uma grade global e outra grade mais refinada e centrada na América do Sul. A condição atmosférica inicial ocorreu para o dia 01 de janeiro de 1982 às 06 UTC, proveniente das Reanálises II do National Center for Environmental Prediction. O modelo foi integrado até 31 de dezembro de 2012 às 18 UTC. Para as condições de contorno inferior foram utilizados dados de Temperatura da Superfície do Mar obtidos da segunda versão do Optimum Interpolation Sea Surface Temperature. Os resultados das simulações, para os dois diferentes tipos de parametrizações de radiação, foram comparados com os dados de precipitação do ClimateResearch Unit Time-Series Version 3.22 para o período de 1982 a 2012. Os resultados das simulações mostraram que o modelo, para as duas parametrizações, conseguiu acompanhar a climatologia da precipitação ao longo do ciclo anual, mas subestimando as médias observadas. No trimestre junho-julho-agosto, o experimento com parametrização Harrington obteve melhor correlação (0,855). Por outro lado, para o trimestre março-abril-maio, o experimento com parametrização Chen apresentou maior correlação (0,842). Quanto aos erros de vieses, ambos os experimentos subestimaram a precipitação nos trimestres março-abrilmaio e junho-julho-agosto, em maior grau o experimento Chen, o qual superestimou os trimestres setembro-outubro-novembro e dezembro-janeiro-fevereiro. De acordo com o índice de eficiência, nenhum dos experimentos obteve boa precisão em comparação ao dado observacional. Em geral, os experimentos representaram os aspectos de grande escala, porém para obter melhorias significativas na estimativa de precipitação, faz-se necessário adotar grades de maior resolução espacial.Universidade Federal do Rio de JaneiroCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorConselho Nacional de Desenvolvimento Científico e TecnológicoSilva, Maria Leidinice daLima, Kellen CarlaOliveira, Cristiano Prestrelo deBarbosa, Augusto Cesar BarrosSantos, Antônio Carlos Santana dos2020-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufrj.br/index.php/aigeo/article/view/3614310.11137/2020_3_475_487Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 475_487Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 475_4871982-39080101-9759reponame:Anuário do Instituto de Geociências (Online)instname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJenghttps://revistas.ufrj.br/index.php/aigeo/article/view/36143/pdf/*ref*/Alves, J.M.B.; Barbosa A.C.B.; Silva, E.M.; Junior, F.C.V.; Silva, M.L.; Santos, A.C.S.; Lira, M.A.T. & Sombra, S.S. 2018. Oscilações Intrassazonais Convectivas entre as regiões Indico-Pacífico e o Nordeste do Brasil: Algumas Características Observacionais e de Modelagem. Revista Brasileira de Meteorologia, 33(1): 193-206./*ref*/Ambrizzi, T.; Reboita, M.S.; Llopart, M.P. & Rocha, R.P. 2019. The state of the art and fundamental aspects of regional climate modeling in South America. Annals of the New York Academy of Sciences. Hoboken: Wiley, 1436: 98-120./*ref*/Avissar, R. & Pielke, R.A. 1989. Parameterization of heterogeneous land surfaces for atmospheric numerical-models and its impact on regional meteorology. Monthly Weather Review, 117(10): 2113-2136./*ref*/Barbosa, A.C.B. 2012. Oscilações Intrassazonais no INDI-PAC e na Zona de Convergência do Atlântico Sul: Estudo observacional e numérico. Doutorado em Meteorologia, IAG, USP, São Paulo./*ref*/Chen, C. & Cotton, W.R. 1983. A one-dimensional simulation of the stratocumulus-capped mixed layer. Boundary-layer Meteorology, 25: 289-321./*ref*/Chen, C. & Cotton, W.R. 1987. The physics of the marine stratocumulus-capped mixed layer. Journal of the Atmospheric Sciences, 44(20): 2951-2977./*ref*/Cohen, J.C.P.; Silva Dias, M.A.F. & Nobre, C. 1995. Environmental conditions associated with amazonian squall lines: A case study. Monthly Weather Review, 123: 3163-3174. Costa, M.S.; Lima, K.C.; Andrade, M.M. & Gonçalves, W.A. 2019. Sistemas Convectivos de Mesoescala Associados a Eventos Extremos de Precipitação Sobre o Semiárido do Nordeste do Brasil. Anuário do Instituto de Geociências, 42: 317-328./*ref*/Cotton, W.R.; Pielke, R.A.S.R.; Walko, R.L.; Liston, G.E.; Tremback, C.J.; Jiang, H.; Mcanelly, R.L.; Harrington, J.Y.; Nicholls, M.E.; Carrio, G.G. & Mcfadden, L.P. 2003. RAMS: Current Status and future directions. Meteorology Atmospheric Physics, 82: 5-29./*ref*/Ferreira, A.G. & Mello, N.G.S. 2005. Principais sistemas atmosféricos atuantes sobre a Região Nordeste do Brasil e a influência dos Oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, 1(1): 15-28./*ref*/Harrington, J.Y. & Olsson, P.Q. 2001. A method for the parameterization of cloud optical properites in bulk and bin microphysical models. Implications for arctic cloudy boundary layers. Atmospheric Research, 57(1): 51-80./*ref*/Harris, I.; Jones, P.D.; Osborn, T.J. & Lister, D.H. 2014.Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642./*ref*/Kousky, V.E. & Gan, M.A. 1981. Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus, 36(6): 538-551./*ref*/Madden, A.R. & Julian, P.R. 1994. Observations of the 40-50-day tropical oscillation - A review. Monthly Weather Review. 22: 814-837. Mellor, G.L. & Yamada, T. 1982. Development of a turbulence closure-model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851-875./*ref*/Meyers, M.P.; Walko, R.L.; Harrington, J.Y. & Cotton, W.R. 1997. New RAMS cloud microphysics parameterization 2. The two-moment scheme. Atmosphere Research, 45: 3-39./*ref*/Nash, J.E. & Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology. 3: 282-290./*ref*/New, M.; Lister, D.; Hulme, M. & Makin, I. 2001. A high-resolution data set of surface climate over global land areas. Climate Research, 21: 1-25. Oliveira, P.T.; Silva, C.S. & Lima, K.C. 2017. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology, 130(2): 77–90./*ref*/Palharini, R.S.A. & Vila, D.A. 2017. Climatological Behavior of Precipitating Clouds in the Northeast Region of Brazil. Advances in Meteorology, 2017: 1-12./*ref*/Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J. & Copeland, J.H. 1992. A comprehensive meteorological modeling system-RAM. Meteorology and Atmospheric Physics, 49: 69-91./*ref*/Ramos Da Silva, R.; Dias, P.L.S.; Moreira, D.S. & Souza, E.B. 2009. Modelo Olam (Ocean-Land-Atmosphere-Model): Descrição, Aplicações, e Perspectivas. Revista Brasileira de Meteorologia, 24(2): 144-157./*ref*/Ramos Da Silva, R.; Gandú, A.W.; Cohen, J.C.; Kuhn, P. & Mota, M.A. 2014. Weather forecasting for Eastern Amazon with OLAM model. Revista Brasileira de Meteorologia, 29: 11-22./*ref*/Reboita, M.S.; Gan, M.A.; Rocha, R.P. & Ambrizzi, T. 2010. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, 25(2): 185- 204./*ref*/Reboita, M.S. & Santos, I.Z. 2014. Influência de alguns padrões de teleconexão na precipitação no norte e nordeste do Brasil. Revista Brasileira de Climatologia, 15: 28-48./*ref*/Sales, D.C.; Costa, A.A.; Silva, E.M.; Vasconcelos Júnior, F.C.; Guimarães, S.O.; Araújo Junior, L.M.; Pereira, J.M.R.; Cavalcante, A.M.B.; Medeiros, S.S. & Marin, A.M.P. 2015. Projeções de mudanças na precipitação e temperatura no Nordeste Brasileiro utilizando a técnica de downscaling dinâmico. Revista Brasileira de Meteorologia, 30(4): 435-456./*ref*/Silveira, C.S.; Souza Filho, F.A.; Costa, A.A. & Cabral, S.L. 2013. Avaliação de desempenho dos modelos do CMIP5 quanto à representação dos padrões de variação da precipitação no século XX sobre a região Nordeste Do Brasil, Amazônia e Bacia do Prata e análise das projeções para o cenário RCP8.5. Revista Brasileira de Meteorologia, 28(3): 317-330./*ref*/Timmermann, A.; An, S-I.; Kug, J-S.; Jin, F-F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Stein, K.; Wittenberg, A.T.; Yun, K-S.; Bayr, T.; Chen, H-C.; Chikamoto, Y.; Dewitte, B.; Dommenget, D.; Grothe, P.; Guilyardi, E.; Ham, Y-G.; Hayashi, M.; Ineson, S.; Kang, D.; Kim, S.; Kim, W.; Lee, J-Y.; Li, T.; Luo, J-J.; McGregor, S.; Planton, Y.; Power, S.; Rashid, H.; Ren, H-L.; Santoso, A.; Takahashi, K.; Todd, A.; Wang, G.; Wang, G.; Xie, R.; Yang, W-H.; Yeh, S-W.; Yoon, J.; Zeller, E. & Zhang, X. 2018. El Niño-Southern Oscillation complexity. Nature, 559: 535-545./*ref*/Uvo, C.R.B. & Nobre, C.A. 1989. A ZCIT e a precipitação no norte do Nordeste do Brasil. Parte I: A posição da ZCIT No Atlântico Equatorial. Climanálise, 4(7): 34-34./*ref*/Uvo, C.R.B.; Repelli, C.A.; Zebiak, S.E. & Kushnir, Y. 1998. The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. Journal Climate, 11: 551-562./*ref*/Tremback, C. J. 1990. Numerical simulation of a mesoscale convective complex: Model development and numerical results. Ph.D. Dissertation, USA, 217p./*ref*/Walko, R.L.; Cotton, W.R.; Meyers, M.P. & Harrington, J.Y. 1995. New RAMS cloud microphysics parameterization 1. The single-moment scheme. Atmospheric Research, 38: 29-62./*ref*/Walko, R. L. & Avissar, R. 2006. Predicting hurricane landfall location and timing with the Ocean-Land-Atmosphere Model (OLAM). Geophysical Research Abstracts, 8: 4344.Copyright (c) 2020 Anuário do Instituto de Geociênciashttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2022-03-22T20:44:05Zoai:www.revistas.ufrj.br:article/36143Revistahttps://revistas.ufrj.br/index.php/aigeo/indexPUBhttps://revistas.ufrj.br/index.php/aigeo/oaianuario@igeo.ufrj.br||1982-39080101-9759opendoar:2022-03-22T20:44:05Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
title Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
spellingShingle Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
Silva, Maria Leidinice da
Simulação global; Desempenho; Esquemas de radiação
title_short Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
title_full Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
title_fullStr Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
title_full_unstemmed Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
title_sort Avaliação do Modelo OLAMv.3.3 na Simulação da Precipitação sobre o Nordeste Setentrional Brasileiro
author Silva, Maria Leidinice da
author_facet Silva, Maria Leidinice da
Lima, Kellen Carla
Oliveira, Cristiano Prestrelo de
Barbosa, Augusto Cesar Barros
Santos, Antônio Carlos Santana dos
author_role author
author2 Lima, Kellen Carla
Oliveira, Cristiano Prestrelo de
Barbosa, Augusto Cesar Barros
Santos, Antônio Carlos Santana dos
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.contributor.author.fl_str_mv Silva, Maria Leidinice da
Lima, Kellen Carla
Oliveira, Cristiano Prestrelo de
Barbosa, Augusto Cesar Barros
Santos, Antônio Carlos Santana dos
dc.subject.por.fl_str_mv Simulação global; Desempenho; Esquemas de radiação
topic Simulação global; Desempenho; Esquemas de radiação
description O modelo global de previsão numérica de tempo e clima, Ocean Land Atmosphere Model, atualmente é considerado como o novo estado-da-arte em modelagem numérica devido a sua capacidade de representar fenômenos de escalas global e regional simultaneamente. Deste modo, a pesquisa tem como objetivo avaliar o desempenho deste modelo em relação ao melhor esquema de radiação (Chen ou Harrington) para representar a precipitação na área Setentrional do Nordeste do Brasil. Assim, o modelo foi configurado com uma grade global e outra grade mais refinada e centrada na América do Sul. A condição atmosférica inicial ocorreu para o dia 01 de janeiro de 1982 às 06 UTC, proveniente das Reanálises II do National Center for Environmental Prediction. O modelo foi integrado até 31 de dezembro de 2012 às 18 UTC. Para as condições de contorno inferior foram utilizados dados de Temperatura da Superfície do Mar obtidos da segunda versão do Optimum Interpolation Sea Surface Temperature. Os resultados das simulações, para os dois diferentes tipos de parametrizações de radiação, foram comparados com os dados de precipitação do ClimateResearch Unit Time-Series Version 3.22 para o período de 1982 a 2012. Os resultados das simulações mostraram que o modelo, para as duas parametrizações, conseguiu acompanhar a climatologia da precipitação ao longo do ciclo anual, mas subestimando as médias observadas. No trimestre junho-julho-agosto, o experimento com parametrização Harrington obteve melhor correlação (0,855). Por outro lado, para o trimestre março-abril-maio, o experimento com parametrização Chen apresentou maior correlação (0,842). Quanto aos erros de vieses, ambos os experimentos subestimaram a precipitação nos trimestres março-abrilmaio e junho-julho-agosto, em maior grau o experimento Chen, o qual superestimou os trimestres setembro-outubro-novembro e dezembro-janeiro-fevereiro. De acordo com o índice de eficiência, nenhum dos experimentos obteve boa precisão em comparação ao dado observacional. Em geral, os experimentos representaram os aspectos de grande escala, porém para obter melhorias significativas na estimativa de precipitação, faz-se necessário adotar grades de maior resolução espacial.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-30
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/36143
10.11137/2020_3_475_487
url https://revistas.ufrj.br/index.php/aigeo/article/view/36143
identifier_str_mv 10.11137/2020_3_475_487
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufrj.br/index.php/aigeo/article/view/36143/pdf
/*ref*/Alves, J.M.B.; Barbosa A.C.B.; Silva, E.M.; Junior, F.C.V.; Silva, M.L.; Santos, A.C.S.; Lira, M.A.T. & Sombra, S.S. 2018. Oscilações Intrassazonais Convectivas entre as regiões Indico-Pacífico e o Nordeste do Brasil: Algumas Características Observacionais e de Modelagem. Revista Brasileira de Meteorologia, 33(1): 193-206.
/*ref*/Ambrizzi, T.; Reboita, M.S.; Llopart, M.P. & Rocha, R.P. 2019. The state of the art and fundamental aspects of regional climate modeling in South America. Annals of the New York Academy of Sciences. Hoboken: Wiley, 1436: 98-120.
/*ref*/Avissar, R. & Pielke, R.A. 1989. Parameterization of heterogeneous land surfaces for atmospheric numerical-models and its impact on regional meteorology. Monthly Weather Review, 117(10): 2113-2136.
/*ref*/Barbosa, A.C.B. 2012. Oscilações Intrassazonais no INDI-PAC e na Zona de Convergência do Atlântico Sul: Estudo observacional e numérico. Doutorado em Meteorologia, IAG, USP, São Paulo.
/*ref*/Chen, C. & Cotton, W.R. 1983. A one-dimensional simulation of the stratocumulus-capped mixed layer. Boundary-layer Meteorology, 25: 289-321.
/*ref*/Chen, C. & Cotton, W.R. 1987. The physics of the marine stratocumulus-capped mixed layer. Journal of the Atmospheric Sciences, 44(20): 2951-2977.
/*ref*/Cohen, J.C.P.; Silva Dias, M.A.F. & Nobre, C. 1995. Environmental conditions associated with amazonian squall lines: A case study. Monthly Weather Review, 123: 3163-3174. Costa, M.S.; Lima, K.C.; Andrade, M.M. & Gonçalves, W.A. 2019. Sistemas Convectivos de Mesoescala Associados a Eventos Extremos de Precipitação Sobre o Semiárido do Nordeste do Brasil. Anuário do Instituto de Geociências, 42: 317-328.
/*ref*/Cotton, W.R.; Pielke, R.A.S.R.; Walko, R.L.; Liston, G.E.; Tremback, C.J.; Jiang, H.; Mcanelly, R.L.; Harrington, J.Y.; Nicholls, M.E.; Carrio, G.G. & Mcfadden, L.P. 2003. RAMS: Current Status and future directions. Meteorology Atmospheric Physics, 82: 5-29.
/*ref*/Ferreira, A.G. & Mello, N.G.S. 2005. Principais sistemas atmosféricos atuantes sobre a Região Nordeste do Brasil e a influência dos Oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, 1(1): 15-28.
/*ref*/Harrington, J.Y. & Olsson, P.Q. 2001. A method for the parameterization of cloud optical properites in bulk and bin microphysical models. Implications for arctic cloudy boundary layers. Atmospheric Research, 57(1): 51-80.
/*ref*/Harris, I.; Jones, P.D.; Osborn, T.J. & Lister, D.H. 2014.Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642.
/*ref*/Kousky, V.E. & Gan, M.A. 1981. Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus, 36(6): 538-551.
/*ref*/Madden, A.R. & Julian, P.R. 1994. Observations of the 40-50-day tropical oscillation - A review. Monthly Weather Review. 22: 814-837. Mellor, G.L. & Yamada, T. 1982. Development of a turbulence closure-model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851-875.
/*ref*/Meyers, M.P.; Walko, R.L.; Harrington, J.Y. & Cotton, W.R. 1997. New RAMS cloud microphysics parameterization 2. The two-moment scheme. Atmosphere Research, 45: 3-39.
/*ref*/Nash, J.E. & Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology. 3: 282-290.
/*ref*/New, M.; Lister, D.; Hulme, M. & Makin, I. 2001. A high-resolution data set of surface climate over global land areas. Climate Research, 21: 1-25. Oliveira, P.T.; Silva, C.S. & Lima, K.C. 2017. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology, 130(2): 77–90.
/*ref*/Palharini, R.S.A. & Vila, D.A. 2017. Climatological Behavior of Precipitating Clouds in the Northeast Region of Brazil. Advances in Meteorology, 2017: 1-12.
/*ref*/Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J. & Copeland, J.H. 1992. A comprehensive meteorological modeling system-RAM. Meteorology and Atmospheric Physics, 49: 69-91.
/*ref*/Ramos Da Silva, R.; Dias, P.L.S.; Moreira, D.S. & Souza, E.B. 2009. Modelo Olam (Ocean-Land-Atmosphere-Model): Descrição, Aplicações, e Perspectivas. Revista Brasileira de Meteorologia, 24(2): 144-157.
/*ref*/Ramos Da Silva, R.; Gandú, A.W.; Cohen, J.C.; Kuhn, P. & Mota, M.A. 2014. Weather forecasting for Eastern Amazon with OLAM model. Revista Brasileira de Meteorologia, 29: 11-22.
/*ref*/Reboita, M.S.; Gan, M.A.; Rocha, R.P. & Ambrizzi, T. 2010. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira de Meteorologia, 25(2): 185- 204.
/*ref*/Reboita, M.S. & Santos, I.Z. 2014. Influência de alguns padrões de teleconexão na precipitação no norte e nordeste do Brasil. Revista Brasileira de Climatologia, 15: 28-48.
/*ref*/Sales, D.C.; Costa, A.A.; Silva, E.M.; Vasconcelos Júnior, F.C.; Guimarães, S.O.; Araújo Junior, L.M.; Pereira, J.M.R.; Cavalcante, A.M.B.; Medeiros, S.S. & Marin, A.M.P. 2015. Projeções de mudanças na precipitação e temperatura no Nordeste Brasileiro utilizando a técnica de downscaling dinâmico. Revista Brasileira de Meteorologia, 30(4): 435-456.
/*ref*/Silveira, C.S.; Souza Filho, F.A.; Costa, A.A. & Cabral, S.L. 2013. Avaliação de desempenho dos modelos do CMIP5 quanto à representação dos padrões de variação da precipitação no século XX sobre a região Nordeste Do Brasil, Amazônia e Bacia do Prata e análise das projeções para o cenário RCP8.5. Revista Brasileira de Meteorologia, 28(3): 317-330.
/*ref*/Timmermann, A.; An, S-I.; Kug, J-S.; Jin, F-F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; Stein, K.; Wittenberg, A.T.; Yun, K-S.; Bayr, T.; Chen, H-C.; Chikamoto, Y.; Dewitte, B.; Dommenget, D.; Grothe, P.; Guilyardi, E.; Ham, Y-G.; Hayashi, M.; Ineson, S.; Kang, D.; Kim, S.; Kim, W.; Lee, J-Y.; Li, T.; Luo, J-J.; McGregor, S.; Planton, Y.; Power, S.; Rashid, H.; Ren, H-L.; Santoso, A.; Takahashi, K.; Todd, A.; Wang, G.; Wang, G.; Xie, R.; Yang, W-H.; Yeh, S-W.; Yoon, J.; Zeller, E. & Zhang, X. 2018. El Niño-Southern Oscillation complexity. Nature, 559: 535-545.
/*ref*/Uvo, C.R.B. & Nobre, C.A. 1989. A ZCIT e a precipitação no norte do Nordeste do Brasil. Parte I: A posição da ZCIT No Atlântico Equatorial. Climanálise, 4(7): 34-34.
/*ref*/Uvo, C.R.B.; Repelli, C.A.; Zebiak, S.E. & Kushnir, Y. 1998. The relationships between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. Journal Climate, 11: 551-562.
/*ref*/Tremback, C. J. 1990. Numerical simulation of a mesoscale convective complex: Model development and numerical results. Ph.D. Dissertation, USA, 217p.
/*ref*/Walko, R.L.; Cotton, W.R.; Meyers, M.P. & Harrington, J.Y. 1995. New RAMS cloud microphysics parameterization 1. The single-moment scheme. Atmospheric Research, 38: 29-62.
/*ref*/Walko, R. L. & Avissar, R. 2006. Predicting hurricane landfall location and timing with the Ocean-Land-Atmosphere Model (OLAM). Geophysical Research Abstracts, 8: 4344.
dc.rights.driver.fl_str_mv Copyright (c) 2020 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Anuário do Instituto de Geociências
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 475_487
Anuário do Instituto de Geociências; Vol 43, No 3 (2020); 475_487
1982-3908
0101-9759
reponame:Anuário do Instituto de Geociências (Online)
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Anuário do Instituto de Geociências (Online)
collection Anuário do Instituto de Geociências (Online)
repository.name.fl_str_mv Anuário do Instituto de Geociências (Online) - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv anuario@igeo.ufrj.br||
_version_ 1797053537901871104