Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Floresta e Ambiente |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303 |
Resumo: | Abstract Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods (AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for the highest risk class were 31% and 96%. The low sensitivity values can be attributed to the randomness attributed to anthropic fire. The high specificity values point to a good separation of the higher risk class compared to the others. |
id |
UFRJ-3_20f2eec1b9dd558a9b48be35a206ad9e |
---|---|
oai_identifier_str |
oai:scielo:S2179-80872022000100303 |
network_acronym_str |
UFRJ-3 |
network_name_str |
Floresta e Ambiente |
repository_id_str |
|
spelling |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics ApproachAnalytic Hierarchy ProcessBurn FrequencyFuzzy LogicPortugalRandom ForestAbstract Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods (AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for the highest risk class were 31% and 96%. The low sensitivity values can be attributed to the randomness attributed to anthropic fire. The high specificity values point to a good separation of the higher risk class compared to the others.Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303Floresta e Ambiente v.29 n.1 2022reponame:Floresta e Ambienteinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ10.1590/2179-8087-floram-2021-0078info:eu-repo/semantics/openAccessSantana Neto,Vicente PauloLeite,Rodrigo VieiraSantos,Vitor Juste dosAlves,Sabrina do CarmoCastro,Jackeline de SiqueiraTorres,Fillipe Tamiozzo PereiraCalijuri,Maria Luciaeng2021-12-20T00:00:00Zoai:scielo:S2179-80872022000100303Revistahttps://www.floram.org/PUBhttps://old.scielo.br/oai/scielo-oai.phpfloramjournal@gmail.com||floram@ufrrj.br||2179-80871415-0980opendoar:2021-12-20T00:00Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
title |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
spellingShingle |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach Santana Neto,Vicente Paulo Analytic Hierarchy Process Burn Frequency Fuzzy Logic Portugal Random Forest |
title_short |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
title_full |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
title_fullStr |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
title_full_unstemmed |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
title_sort |
Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach |
author |
Santana Neto,Vicente Paulo |
author_facet |
Santana Neto,Vicente Paulo Leite,Rodrigo Vieira Santos,Vitor Juste dos Alves,Sabrina do Carmo Castro,Jackeline de Siqueira Torres,Fillipe Tamiozzo Pereira Calijuri,Maria Lucia |
author_role |
author |
author2 |
Leite,Rodrigo Vieira Santos,Vitor Juste dos Alves,Sabrina do Carmo Castro,Jackeline de Siqueira Torres,Fillipe Tamiozzo Pereira Calijuri,Maria Lucia |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Santana Neto,Vicente Paulo Leite,Rodrigo Vieira Santos,Vitor Juste dos Alves,Sabrina do Carmo Castro,Jackeline de Siqueira Torres,Fillipe Tamiozzo Pereira Calijuri,Maria Lucia |
dc.subject.por.fl_str_mv |
Analytic Hierarchy Process Burn Frequency Fuzzy Logic Portugal Random Forest |
topic |
Analytic Hierarchy Process Burn Frequency Fuzzy Logic Portugal Random Forest |
description |
Abstract Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods (AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for the highest risk class were 31% and 96%. The low sensitivity values can be attributed to the randomness attributed to anthropic fire. The high specificity values point to a good separation of the higher risk class compared to the others. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-8087-floram-2021-0078 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro |
publisher.none.fl_str_mv |
Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
Floresta e Ambiente v.29 n.1 2022 reponame:Floresta e Ambiente instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Floresta e Ambiente |
collection |
Floresta e Ambiente |
repository.name.fl_str_mv |
Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
floramjournal@gmail.com||floram@ufrrj.br|| |
_version_ |
1750128143981608960 |