Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach

Detalhes bibliográficos
Autor(a) principal: Santana Neto,Vicente Paulo
Data de Publicação: 2022
Outros Autores: Leite,Rodrigo Vieira, Santos,Vitor Juste dos, Alves,Sabrina do Carmo, Castro,Jackeline de Siqueira, Torres,Fillipe Tamiozzo Pereira, Calijuri,Maria Lucia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Floresta e Ambiente
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303
Resumo: Abstract Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods (AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for the highest risk class were 31% and 96%. The low sensitivity values can be attributed to the randomness attributed to anthropic fire. The high specificity values point to a good separation of the higher risk class compared to the others.
id UFRJ-3_20f2eec1b9dd558a9b48be35a206ad9e
oai_identifier_str oai:scielo:S2179-80872022000100303
network_acronym_str UFRJ-3
network_name_str Floresta e Ambiente
repository_id_str
spelling Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics ApproachAnalytic Hierarchy ProcessBurn FrequencyFuzzy LogicPortugalRandom ForestAbstract Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods (AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for the highest risk class were 31% and 96%. The low sensitivity values can be attributed to the randomness attributed to anthropic fire. The high specificity values point to a good separation of the higher risk class compared to the others.Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303Floresta e Ambiente v.29 n.1 2022reponame:Floresta e Ambienteinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ10.1590/2179-8087-floram-2021-0078info:eu-repo/semantics/openAccessSantana Neto,Vicente PauloLeite,Rodrigo VieiraSantos,Vitor Juste dosAlves,Sabrina do CarmoCastro,Jackeline de SiqueiraTorres,Fillipe Tamiozzo PereiraCalijuri,Maria Luciaeng2021-12-20T00:00:00Zoai:scielo:S2179-80872022000100303Revistahttps://www.floram.org/PUBhttps://old.scielo.br/oai/scielo-oai.phpfloramjournal@gmail.com||floram@ufrrj.br||2179-80871415-0980opendoar:2021-12-20T00:00Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
title Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
spellingShingle Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
Santana Neto,Vicente Paulo
Analytic Hierarchy Process
Burn Frequency
Fuzzy Logic
Portugal
Random Forest
title_short Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
title_full Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
title_fullStr Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
title_full_unstemmed Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
title_sort Burning Susceptibility Modeling to Reduce Wildfire Impacts: A GIS and Multivariate Statistics Approach
author Santana Neto,Vicente Paulo
author_facet Santana Neto,Vicente Paulo
Leite,Rodrigo Vieira
Santos,Vitor Juste dos
Alves,Sabrina do Carmo
Castro,Jackeline de Siqueira
Torres,Fillipe Tamiozzo Pereira
Calijuri,Maria Lucia
author_role author
author2 Leite,Rodrigo Vieira
Santos,Vitor Juste dos
Alves,Sabrina do Carmo
Castro,Jackeline de Siqueira
Torres,Fillipe Tamiozzo Pereira
Calijuri,Maria Lucia
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Santana Neto,Vicente Paulo
Leite,Rodrigo Vieira
Santos,Vitor Juste dos
Alves,Sabrina do Carmo
Castro,Jackeline de Siqueira
Torres,Fillipe Tamiozzo Pereira
Calijuri,Maria Lucia
dc.subject.por.fl_str_mv Analytic Hierarchy Process
Burn Frequency
Fuzzy Logic
Portugal
Random Forest
topic Analytic Hierarchy Process
Burn Frequency
Fuzzy Logic
Portugal
Random Forest
description Abstract Forest burning susceptibility mapping is a tool to mitigate wildfires, with several methods to develop them. This study aimed to compare the Analytic Hierarchy Process (AHP), Multiple Linear Regression (MLR), and Random Forest (RF) methods for mapping. Several variables were used to generate the maps. For MLR and RF methods, fire frequency between 1990 and 2010 was used as the response variable in the models. To validate the methods (AHP, MLR and RF), fire data between 2011 and 2018 were used in four stages. RF was the best method employed. Correct and incorrect values for this method were 74% and 26% and AUC 0.66. The sensitivity and specificity for the highest risk class were 31% and 96%. The low sensitivity values can be attributed to the randomness attributed to anthropic fire. The high specificity values point to a good separation of the higher risk class compared to the others.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872022000100303
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-8087-floram-2021-0078
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
publisher.none.fl_str_mv Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv Floresta e Ambiente v.29 n.1 2022
reponame:Floresta e Ambiente
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Floresta e Ambiente
collection Floresta e Ambiente
repository.name.fl_str_mv Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv floramjournal@gmail.com||floram@ufrrj.br||
_version_ 1750128143981608960