Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States

Detalhes bibliográficos
Autor(a) principal: Farias,Aline Araújo
Data de Publicação: 2019
Outros Autores: Gezan,Salvador A., de Carvalho,Melissa Pisaroglo, Ferraz Filho,Antonio Carlos, Soares,Carlos Pedro Boechat
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Floresta e Ambiente
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019005000106
Resumo: ABSTRACT Pinus palustris Mill. ecosystem is considered one of the most threatened of North America. In this context, studies on biomass quantification are fundamental for forest management plans. Thus, the objective of this study was to develop a set of allometric equations to predict total P. palustris stump-biomass. Biomass data were collected at different locations in the southeastern United States. A total of 119 allometric equations were fitted from the combination of explanatory variables: diameter at breast height (DBH), height (H), age (I), basal area (G), number of trees per hectare (N), site index (S) and quadratic diameter (Dq). One of the models that presented the lowest residual standard error (Sy.x) and root mean square error (RMSE) was ln(W) = -0.9978+0.7082.(H)+0.1009.ln(H.DBH)-0.5310.(N)-0.0003.ln(Dq). Therefore, the insertion of dendrometric variables characteristic of forest stands has great efficacy in biomass prediction for trees from different sites.
id UFRJ-3_e10c34073d83a7c20a71ef4267c60d6c
oai_identifier_str oai:scielo:S2179-80872019005000106
network_acronym_str UFRJ-3
network_name_str Floresta e Ambiente
repository_id_str
spelling Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United Statesforest managementmodelingregressionABSTRACT Pinus palustris Mill. ecosystem is considered one of the most threatened of North America. In this context, studies on biomass quantification are fundamental for forest management plans. Thus, the objective of this study was to develop a set of allometric equations to predict total P. palustris stump-biomass. Biomass data were collected at different locations in the southeastern United States. A total of 119 allometric equations were fitted from the combination of explanatory variables: diameter at breast height (DBH), height (H), age (I), basal area (G), number of trees per hectare (N), site index (S) and quadratic diameter (Dq). One of the models that presented the lowest residual standard error (Sy.x) and root mean square error (RMSE) was ln(W) = -0.9978+0.7082.(H)+0.1009.ln(H.DBH)-0.5310.(N)-0.0003.ln(Dq). Therefore, the insertion of dendrometric variables characteristic of forest stands has great efficacy in biomass prediction for trees from different sites.Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019005000106Floresta e Ambiente v.26 n.spe1 2019reponame:Floresta e Ambienteinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ10.1590/2179-8087.040318info:eu-repo/semantics/openAccessFarias,Aline AraújoGezan,Salvador A.de Carvalho,Melissa PisarogloFerraz Filho,Antonio CarlosSoares,Carlos Pedro Boechateng2019-08-26T00:00:00Zoai:scielo:S2179-80872019005000106Revistahttps://www.floram.org/PUBhttps://old.scielo.br/oai/scielo-oai.phpfloramjournal@gmail.com||floram@ufrrj.br||2179-80871415-0980opendoar:2019-08-26T00:00Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
title Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
spellingShingle Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
Farias,Aline Araújo
forest management
modeling
regression
title_short Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
title_full Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
title_fullStr Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
title_full_unstemmed Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
title_sort Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States
author Farias,Aline Araújo
author_facet Farias,Aline Araújo
Gezan,Salvador A.
de Carvalho,Melissa Pisaroglo
Ferraz Filho,Antonio Carlos
Soares,Carlos Pedro Boechat
author_role author
author2 Gezan,Salvador A.
de Carvalho,Melissa Pisaroglo
Ferraz Filho,Antonio Carlos
Soares,Carlos Pedro Boechat
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Farias,Aline Araújo
Gezan,Salvador A.
de Carvalho,Melissa Pisaroglo
Ferraz Filho,Antonio Carlos
Soares,Carlos Pedro Boechat
dc.subject.por.fl_str_mv forest management
modeling
regression
topic forest management
modeling
regression
description ABSTRACT Pinus palustris Mill. ecosystem is considered one of the most threatened of North America. In this context, studies on biomass quantification are fundamental for forest management plans. Thus, the objective of this study was to develop a set of allometric equations to predict total P. palustris stump-biomass. Biomass data were collected at different locations in the southeastern United States. A total of 119 allometric equations were fitted from the combination of explanatory variables: diameter at breast height (DBH), height (H), age (I), basal area (G), number of trees per hectare (N), site index (S) and quadratic diameter (Dq). One of the models that presented the lowest residual standard error (Sy.x) and root mean square error (RMSE) was ln(W) = -0.9978+0.7082.(H)+0.1009.ln(H.DBH)-0.5310.(N)-0.0003.ln(Dq). Therefore, the insertion of dendrometric variables characteristic of forest stands has great efficacy in biomass prediction for trees from different sites.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019005000106
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-80872019005000106
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-8087.040318
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
publisher.none.fl_str_mv Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv Floresta e Ambiente v.26 n.spe1 2019
reponame:Floresta e Ambiente
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Floresta e Ambiente
collection Floresta e Ambiente
repository.name.fl_str_mv Floresta e Ambiente - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv floramjournal@gmail.com||floram@ufrrj.br||
_version_ 1750128143226634240