Scheduling multiprocessor tasks with genetic algorithms

Detalhes bibliográficos
Autor(a) principal: Corrêa, Ricardo Cordeiro
Data de Publicação: 1996
Outros Autores: Ferreira, Afonso, Rebreyend, Pascal
Tipo de documento: Relatório
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/2592
Resumo: In the multíprocessor schedulíng problem a given program is to be scheduled in a given multiprocessor system such that the program 's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time.
id UFRJ_0e2fc8270746450233d81dca1d75affb
oai_identifier_str oai:pantheon.ufrj.br:11422/2592
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Scheduling multiprocessor tasks with genetic algorithmsMultiprocessadoresEscalonamento multidimensionalCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOIn the multíprocessor schedulíng problem a given program is to be scheduled in a given multiprocessor system such that the program 's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time.BrasilInstituto Tércio Pacitti de Aplicações e Pesquisas Computacionais2017-08-04T13:02:36Z2023-12-21T03:03:26Z1996-12-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportCORRÊA, R. C.; FERREIRA, A.; REBREYEND, P. Scheduling multiprocessor tasks with genetic algorithms. Rio de Janeiro: NCE, UFRJ, 1996. 27 p. (Relatório Técnico, 02/96)http://hdl.handle.net/11422/2592engRelatório Técnico NCECorrêa, Ricardo CordeiroFerreira, AfonsoRebreyend, Pascalinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:03:26Zoai:pantheon.ufrj.br:11422/2592Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:03:26Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Scheduling multiprocessor tasks with genetic algorithms
title Scheduling multiprocessor tasks with genetic algorithms
spellingShingle Scheduling multiprocessor tasks with genetic algorithms
Corrêa, Ricardo Cordeiro
Multiprocessadores
Escalonamento multidimensional
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
title_short Scheduling multiprocessor tasks with genetic algorithms
title_full Scheduling multiprocessor tasks with genetic algorithms
title_fullStr Scheduling multiprocessor tasks with genetic algorithms
title_full_unstemmed Scheduling multiprocessor tasks with genetic algorithms
title_sort Scheduling multiprocessor tasks with genetic algorithms
author Corrêa, Ricardo Cordeiro
author_facet Corrêa, Ricardo Cordeiro
Ferreira, Afonso
Rebreyend, Pascal
author_role author
author2 Ferreira, Afonso
Rebreyend, Pascal
author2_role author
author
dc.contributor.author.fl_str_mv Corrêa, Ricardo Cordeiro
Ferreira, Afonso
Rebreyend, Pascal
dc.subject.por.fl_str_mv Multiprocessadores
Escalonamento multidimensional
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
topic Multiprocessadores
Escalonamento multidimensional
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
description In the multíprocessor schedulíng problem a given program is to be scheduled in a given multiprocessor system such that the program 's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time.
publishDate 1996
dc.date.none.fl_str_mv 1996-12-31
2017-08-04T13:02:36Z
2023-12-21T03:03:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/report
format report
status_str publishedVersion
dc.identifier.uri.fl_str_mv CORRÊA, R. C.; FERREIRA, A.; REBREYEND, P. Scheduling multiprocessor tasks with genetic algorithms. Rio de Janeiro: NCE, UFRJ, 1996. 27 p. (Relatório Técnico, 02/96)
http://hdl.handle.net/11422/2592
identifier_str_mv CORRÊA, R. C.; FERREIRA, A.; REBREYEND, P. Scheduling multiprocessor tasks with genetic algorithms. Rio de Janeiro: NCE, UFRJ, 1996. 27 p. (Relatório Técnico, 02/96)
url http://hdl.handle.net/11422/2592
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Relatório Técnico NCE
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Brasil
Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais
publisher.none.fl_str_mv Brasil
Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455965270507520