Scheduling multiprocessor tasks with genetic algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 1996 |
Outros Autores: | , |
Tipo de documento: | Relatório |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/2592 |
Resumo: | In the multíprocessor schedulíng problem a given program is to be scheduled in a given multiprocessor system such that the program 's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time. |
id |
UFRJ_0e2fc8270746450233d81dca1d75affb |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/2592 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Scheduling multiprocessor tasks with genetic algorithmsMultiprocessadoresEscalonamento multidimensionalCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOIn the multíprocessor schedulíng problem a given program is to be scheduled in a given multiprocessor system such that the program 's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time.BrasilInstituto Tércio Pacitti de Aplicações e Pesquisas Computacionais2017-08-04T13:02:36Z2023-12-21T03:03:26Z1996-12-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportCORRÊA, R. C.; FERREIRA, A.; REBREYEND, P. Scheduling multiprocessor tasks with genetic algorithms. Rio de Janeiro: NCE, UFRJ, 1996. 27 p. (Relatório Técnico, 02/96)http://hdl.handle.net/11422/2592engRelatório Técnico NCECorrêa, Ricardo CordeiroFerreira, AfonsoRebreyend, Pascalinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:03:26Zoai:pantheon.ufrj.br:11422/2592Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:03:26Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Scheduling multiprocessor tasks with genetic algorithms |
title |
Scheduling multiprocessor tasks with genetic algorithms |
spellingShingle |
Scheduling multiprocessor tasks with genetic algorithms Corrêa, Ricardo Cordeiro Multiprocessadores Escalonamento multidimensional CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
title_short |
Scheduling multiprocessor tasks with genetic algorithms |
title_full |
Scheduling multiprocessor tasks with genetic algorithms |
title_fullStr |
Scheduling multiprocessor tasks with genetic algorithms |
title_full_unstemmed |
Scheduling multiprocessor tasks with genetic algorithms |
title_sort |
Scheduling multiprocessor tasks with genetic algorithms |
author |
Corrêa, Ricardo Cordeiro |
author_facet |
Corrêa, Ricardo Cordeiro Ferreira, Afonso Rebreyend, Pascal |
author_role |
author |
author2 |
Ferreira, Afonso Rebreyend, Pascal |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Corrêa, Ricardo Cordeiro Ferreira, Afonso Rebreyend, Pascal |
dc.subject.por.fl_str_mv |
Multiprocessadores Escalonamento multidimensional CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
topic |
Multiprocessadores Escalonamento multidimensional CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
description |
In the multíprocessor schedulíng problem a given program is to be scheduled in a given multiprocessor system such that the program 's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time. |
publishDate |
1996 |
dc.date.none.fl_str_mv |
1996-12-31 2017-08-04T13:02:36Z 2023-12-21T03:03:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/report |
format |
report |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CORRÊA, R. C.; FERREIRA, A.; REBREYEND, P. Scheduling multiprocessor tasks with genetic algorithms. Rio de Janeiro: NCE, UFRJ, 1996. 27 p. (Relatório Técnico, 02/96) http://hdl.handle.net/11422/2592 |
identifier_str_mv |
CORRÊA, R. C.; FERREIRA, A.; REBREYEND, P. Scheduling multiprocessor tasks with genetic algorithms. Rio de Janeiro: NCE, UFRJ, 1996. 27 p. (Relatório Técnico, 02/96) |
url |
http://hdl.handle.net/11422/2592 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Relatório Técnico NCE |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Brasil Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais |
publisher.none.fl_str_mv |
Brasil Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815455965270507520 |