An Analysis of Heat Conduction Models for Nanofluids

Detalhes bibliográficos
Autor(a) principal: Quaresma, João Nazareno Nonato
Data de Publicação: 2010
Outros Autores: Macêdo, Emanuel Negrão, Fonseca, Henrique Massard da, Orlande, Helcio Rangel Barreto, Cotta, Renato Machado
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/8734
Resumo: The mechanism of heat transfer intensification recently brought about by nanofluids is analyzed in this article, in the light of the non-Fourier dual-phase-lagging heat conduction model. The physical problem involves an annular geometry filled with a nanofluid, such as typically used for measurements of the thermal conductivity with Blackwell's line heat source probe. The mathematical formulation for this problem is analytically solved with the classical integral transform technique, thus providing benchmark results for the temperature predicted with the dual-phase-lagging model. Different test cases are examined in this work, involving nanofluids and probe sizes of practical interest. The effects of the relaxation times on the temperature at the surface of the probe are also examined. The results obtained with the dual-phase-lagging model are critically compared to those obtained with the classical parabolic model, showing that the increase in the thermal conductivity of nanofluids measured with the line heat source probe cannot be attributed to hyperbolic effects.
id UFRJ_2fbbede338f8a4af99d2a5bd5ee96be0
oai_identifier_str oai:pantheon.ufrj.br:11422/8734
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling An Analysis of Heat Conduction Models for NanofluidsTemperature variationHeat conductionNon-Fourier effectsCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSThe mechanism of heat transfer intensification recently brought about by nanofluids is analyzed in this article, in the light of the non-Fourier dual-phase-lagging heat conduction model. The physical problem involves an annular geometry filled with a nanofluid, such as typically used for measurements of the thermal conductivity with Blackwell's line heat source probe. The mathematical formulation for this problem is analytically solved with the classical integral transform technique, thus providing benchmark results for the temperature predicted with the dual-phase-lagging model. Different test cases are examined in this work, involving nanofluids and probe sizes of practical interest. The effects of the relaxation times on the temperature at the surface of the probe are also examined. The results obtained with the dual-phase-lagging model are critically compared to those obtained with the classical parabolic model, showing that the increase in the thermal conductivity of nanofluids measured with the line heat source probe cannot be attributed to hyperbolic effects.Indisponível.Taylor & FrancisBrasilNúcleo Interdisciplinar de Dinâmica dos Fluidos2019-07-09T16:28:19Z2023-12-21T03:06:09Z2010-10-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0145-7632http://hdl.handle.net/11422/873410.1080/01457631003689211engHeat Transfer EngineeringQuaresma, João Nazareno NonatoMacêdo, Emanuel NegrãoFonseca, Henrique Massard daOrlande, Helcio Rangel BarretoCotta, Renato Machadoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:06:09Zoai:pantheon.ufrj.br:11422/8734Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:06:09Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv An Analysis of Heat Conduction Models for Nanofluids
title An Analysis of Heat Conduction Models for Nanofluids
spellingShingle An Analysis of Heat Conduction Models for Nanofluids
Quaresma, João Nazareno Nonato
Temperature variation
Heat conduction
Non-Fourier effects
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
title_short An Analysis of Heat Conduction Models for Nanofluids
title_full An Analysis of Heat Conduction Models for Nanofluids
title_fullStr An Analysis of Heat Conduction Models for Nanofluids
title_full_unstemmed An Analysis of Heat Conduction Models for Nanofluids
title_sort An Analysis of Heat Conduction Models for Nanofluids
author Quaresma, João Nazareno Nonato
author_facet Quaresma, João Nazareno Nonato
Macêdo, Emanuel Negrão
Fonseca, Henrique Massard da
Orlande, Helcio Rangel Barreto
Cotta, Renato Machado
author_role author
author2 Macêdo, Emanuel Negrão
Fonseca, Henrique Massard da
Orlande, Helcio Rangel Barreto
Cotta, Renato Machado
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Quaresma, João Nazareno Nonato
Macêdo, Emanuel Negrão
Fonseca, Henrique Massard da
Orlande, Helcio Rangel Barreto
Cotta, Renato Machado
dc.subject.por.fl_str_mv Temperature variation
Heat conduction
Non-Fourier effects
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
topic Temperature variation
Heat conduction
Non-Fourier effects
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
description The mechanism of heat transfer intensification recently brought about by nanofluids is analyzed in this article, in the light of the non-Fourier dual-phase-lagging heat conduction model. The physical problem involves an annular geometry filled with a nanofluid, such as typically used for measurements of the thermal conductivity with Blackwell's line heat source probe. The mathematical formulation for this problem is analytically solved with the classical integral transform technique, thus providing benchmark results for the temperature predicted with the dual-phase-lagging model. Different test cases are examined in this work, involving nanofluids and probe sizes of practical interest. The effects of the relaxation times on the temperature at the surface of the probe are also examined. The results obtained with the dual-phase-lagging model are critically compared to those obtained with the classical parabolic model, showing that the increase in the thermal conductivity of nanofluids measured with the line heat source probe cannot be attributed to hyperbolic effects.
publishDate 2010
dc.date.none.fl_str_mv 2010-10-28
2019-07-09T16:28:19Z
2023-12-21T03:06:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0145-7632
http://hdl.handle.net/11422/8734
10.1080/01457631003689211
identifier_str_mv 0145-7632
10.1080/01457631003689211
url http://hdl.handle.net/11422/8734
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Heat Transfer Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
publisher.none.fl_str_mv Taylor & Francis
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455992194793472