Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço

Detalhes bibliográficos
Autor(a) principal: Souza, Aline Macedo de
Data de Publicação: 2007
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/3277
Resumo: Lately, networks based in wireless technology have grown due to many factors, such as commercial success of the mobile telephony, the continuous grown number of mobile users and Internet users and new multimedia applications. New technologies are being developed, such as WIMAX IEEE 802.16 e IEEE 802.16e. Networks based in WIMAX IEEE 802.16 are used in broadband metropolitan areas, to solve the “last mile” problem, while IEEE standard 802.16e are used to support mobility in this environment. However, any technology that offers mobility must have a mechanism capable to deal with the change of cells while the users are in movement, without interrupting their connections. This concept is called transparent handover. In this context, many solutions are being proposed to minimize the losses caused by the handover processes [2] [14]. In [2], the fast handover algorithm is proposed, aiming to reduce delay and packages loss of real-time downlink flows, improving the handover process in the link layer level (link-layer handover). Through this algorithm, a mobile station (MS) can receive data from the downlink channel of its future base station (BS), through a new management message sent from this BS during the handover process, just after the downlink channel synchronization, but before the uplink channel synchronization process. In [14], the solution proposed is based in a management infrastructure that anticipates where the next handover will probably take place, based on the behavior of users movement profile, allowing proactive reserve of resources for the chosen cell. This permits the maximization use of networks resources and provision of better QoS to different users classes, becoming a very important requirement for WIMAX networks. The objective of this work is to extend the research initiated in [14] that explores the profile of user movement behavior to maximize the network efficiency and provides better QoS for different users class, which easily integrates with WiMAX technology. An algorithm is proposed that, in real-time, makes use of the user profile to reduce the set of probable cells where the next handover will take place, taking in account the type of user, the service being used, and the network availability, allowing pro-active resources reservation in the chosen cells that will be used after the handover. This work describes the handover process in details, identifies main aspects to be observed while implementing IEEE 802.16e networks and finally details the main characteristics that must be present when implementing more efficient methods to support the handover process in WiMax networks, such as mobility models and prediction, and methods of energy consumption reduction.
id UFRJ_35288ace0797cefed0816f56d2fa619f
oai_identifier_str oai:pantheon.ufrj.br:11422/3277
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviçoRedes de computadoresIEEE 802.16e (padrão)WiMAX (Worldwide Interoperability for Microwave Access)Quality of serviceCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOLately, networks based in wireless technology have grown due to many factors, such as commercial success of the mobile telephony, the continuous grown number of mobile users and Internet users and new multimedia applications. New technologies are being developed, such as WIMAX IEEE 802.16 e IEEE 802.16e. Networks based in WIMAX IEEE 802.16 are used in broadband metropolitan areas, to solve the “last mile” problem, while IEEE standard 802.16e are used to support mobility in this environment. However, any technology that offers mobility must have a mechanism capable to deal with the change of cells while the users are in movement, without interrupting their connections. This concept is called transparent handover. In this context, many solutions are being proposed to minimize the losses caused by the handover processes [2] [14]. In [2], the fast handover algorithm is proposed, aiming to reduce delay and packages loss of real-time downlink flows, improving the handover process in the link layer level (link-layer handover). Through this algorithm, a mobile station (MS) can receive data from the downlink channel of its future base station (BS), through a new management message sent from this BS during the handover process, just after the downlink channel synchronization, but before the uplink channel synchronization process. In [14], the solution proposed is based in a management infrastructure that anticipates where the next handover will probably take place, based on the behavior of users movement profile, allowing proactive reserve of resources for the chosen cell. This permits the maximization use of networks resources and provision of better QoS to different users classes, becoming a very important requirement for WIMAX networks. The objective of this work is to extend the research initiated in [14] that explores the profile of user movement behavior to maximize the network efficiency and provides better QoS for different users class, which easily integrates with WiMAX technology. An algorithm is proposed that, in real-time, makes use of the user profile to reduce the set of probable cells where the next handover will take place, taking in account the type of user, the service being used, and the network availability, allowing pro-active resources reservation in the chosen cells that will be used after the handover. This work describes the handover process in details, identifies main aspects to be observed while implementing IEEE 802.16e networks and finally details the main characteristics that must be present when implementing more efficient methods to support the handover process in WiMax networks, such as mobility models and prediction, and methods of energy consumption reduction.O grande sucesso comercial da telefonia móvel, o enorme crescimento do número usuários móveis e usuários da Internet, além da popularidade das aplicações multimídia impulsionam o crescimento das redes sem fio. Nesse cenário, surge o WIMAX IEEE 802.16 e IEEE 802.16e. O WIMAX IEEE 802.16 é uma rede metropolitana em banda larga sem fio da chamada “última milha”, enquanto o padrão IEEE 802.16e tem a função de suportar mobilidade nesse ambiente. Entretanto, quando se trata de mobilidade, a criação de um mecanismo capaz de realizar a troca entre as células de acordo com a locomoção do usuário, sem que o mesmo perca sua conexão atual e perceba essa mudança introduzem o conceito de handover transparente (ato de migrar de uma célula à outra). Nesse contexto, surgem diversas propostas de soluções para minimizar as perdas causadas pelos processos de handover [2] [14]. Em [2] é proposto um algoritmo de fast handover, de forma a reduzir o atraso e a taxa de perda de pacotes para tráfegos downlink oriundos de serviços em tempo real, oferecendo um handover aprimorado de link em camadas (link-layer handover). Através desse algoritmo, uma estação móvel (MS) pode receber dados do canal de downlink da futura estação base (BS), através de uma nova mensagem de gerenciamento proveniente dessa mesma BS durante o processo de handover, ou seja, após a sincronização com o novo canal de downlink mas antes da sincronização com o canal de uplink. Já em [14] é apresentada uma solução de gerenciamento que explora as soluções de perfil do comportamento do usuário em movimento para maximizar a eficiência da rede, provendo melhor QoS para diferentes tipos de usuários. Antecipar as previsões para o próximo handover, levando em conta o tipo de usuário, o contexto do serviço e da rede e fazer uma reserva pró-ativa de recursos para a célula escolhida se torna um requisito importante em um cenário de redes como a WIMAX. O objetivo deste trabalho é dar continuidade a pesquisa iniciada em [14], que propoe um algoritmo que faz uso do perfil do usuário em tempo real para refinar o conjunto de células previstas para o próximo handover, levando em conta o tipo de usuário, o contexto do serviço e o da rede, e assim, fazer uma reserva pró-ativa de recursos na célula escolhida ao qual irá receber o usuário após o handover. Além de descrever os aspectos de handover, identificar aspectos prioritários durante a implementação de redes IEEE 802.16e e os estados críticos para a mobilidade, detalha as principais características que devem ser atendidas para a implementação de métodos mais eficientes de suporte a handover em redes WiMax, como os modelos de mobilidade, predição de mobilidade e métodos de economia de energia.Universidade Federal do Rio de JaneiroBrasilInstituto Tércio Pacitti de Aplicações e Pesquisas ComputacionaisPrograma de Pós-Graduação em Gerência de Redes de Computadores e Tecnologia InternetUFRJPirmez, Lucihttp://lattes.cnpq.br/3763390337091127Souza, Aline Macedo de2017-12-13T18:09:26Z2023-12-21T03:03:58Z2007-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://hdl.handle.net/11422/3277porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:03:58Zoai:pantheon.ufrj.br:11422/3277Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:03:58Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
title Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
spellingShingle Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
Souza, Aline Macedo de
Redes de computadores
IEEE 802.16e (padrão)
WiMAX (Worldwide Interoperability for Microwave Access)
Quality of service
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
title_full Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
title_fullStr Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
title_full_unstemmed Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
title_sort Mobilidade em redes wimax: um estudo sobre os processos de handover, consumo de energia e qualidade de serviço
author Souza, Aline Macedo de
author_facet Souza, Aline Macedo de
author_role author
dc.contributor.none.fl_str_mv Pirmez, Luci
http://lattes.cnpq.br/3763390337091127
dc.contributor.author.fl_str_mv Souza, Aline Macedo de
dc.subject.por.fl_str_mv Redes de computadores
IEEE 802.16e (padrão)
WiMAX (Worldwide Interoperability for Microwave Access)
Quality of service
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Redes de computadores
IEEE 802.16e (padrão)
WiMAX (Worldwide Interoperability for Microwave Access)
Quality of service
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Lately, networks based in wireless technology have grown due to many factors, such as commercial success of the mobile telephony, the continuous grown number of mobile users and Internet users and new multimedia applications. New technologies are being developed, such as WIMAX IEEE 802.16 e IEEE 802.16e. Networks based in WIMAX IEEE 802.16 are used in broadband metropolitan areas, to solve the “last mile” problem, while IEEE standard 802.16e are used to support mobility in this environment. However, any technology that offers mobility must have a mechanism capable to deal with the change of cells while the users are in movement, without interrupting their connections. This concept is called transparent handover. In this context, many solutions are being proposed to minimize the losses caused by the handover processes [2] [14]. In [2], the fast handover algorithm is proposed, aiming to reduce delay and packages loss of real-time downlink flows, improving the handover process in the link layer level (link-layer handover). Through this algorithm, a mobile station (MS) can receive data from the downlink channel of its future base station (BS), through a new management message sent from this BS during the handover process, just after the downlink channel synchronization, but before the uplink channel synchronization process. In [14], the solution proposed is based in a management infrastructure that anticipates where the next handover will probably take place, based on the behavior of users movement profile, allowing proactive reserve of resources for the chosen cell. This permits the maximization use of networks resources and provision of better QoS to different users classes, becoming a very important requirement for WIMAX networks. The objective of this work is to extend the research initiated in [14] that explores the profile of user movement behavior to maximize the network efficiency and provides better QoS for different users class, which easily integrates with WiMAX technology. An algorithm is proposed that, in real-time, makes use of the user profile to reduce the set of probable cells where the next handover will take place, taking in account the type of user, the service being used, and the network availability, allowing pro-active resources reservation in the chosen cells that will be used after the handover. This work describes the handover process in details, identifies main aspects to be observed while implementing IEEE 802.16e networks and finally details the main characteristics that must be present when implementing more efficient methods to support the handover process in WiMax networks, such as mobility models and prediction, and methods of energy consumption reduction.
publishDate 2007
dc.date.none.fl_str_mv 2007-09-17
2017-12-13T18:09:26Z
2023-12-21T03:03:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/3277
url http://hdl.handle.net/11422/3277
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais
Programa de Pós-Graduação em Gerência de Redes de Computadores e Tecnologia Internet
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais
Programa de Pós-Graduação em Gerência de Redes de Computadores e Tecnologia Internet
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455967640289280