Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/14047 |
Resumo: | [EN] This thesis intends to explore machine learning classifiers and techniques to address the problem of fake news detection. Prediction algorithms can generate different results in this problem due to variance in dataset labeling caused by ambiguity and subjectivity of semantic text. The LIAR Dataset was used in the experiments of this thesis. This dataset derived from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling that places political statements in the range between completely false and completely true statements. The original experiment that created the dataset achieved 27.4% class accuracy using hybrid CNN and Bi-Directional LSTM networks. The main contribution of this work consists of evaluating simpler classifiers focusing on using different preprocessing and feature selection techniques when modeling metadata and text features. Furthermore, this work explores the ordinal characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble method already established in the literature. |
id |
UFRJ_39899cb883885245231002572209f456 |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/14047 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenarioAvaliação de classificadores de aprendizado de máquina em cenário multiclasse de detecção de fake newsFake news detectionOrdinal classificationFake news feature extractionCNPQ::ENGENHARIAS[EN] This thesis intends to explore machine learning classifiers and techniques to address the problem of fake news detection. Prediction algorithms can generate different results in this problem due to variance in dataset labeling caused by ambiguity and subjectivity of semantic text. The LIAR Dataset was used in the experiments of this thesis. This dataset derived from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling that places political statements in the range between completely false and completely true statements. The original experiment that created the dataset achieved 27.4% class accuracy using hybrid CNN and Bi-Directional LSTM networks. The main contribution of this work consists of evaluating simpler classifiers focusing on using different preprocessing and feature selection techniques when modeling metadata and text features. Furthermore, this work explores the ordinal characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble method already established in the literature.[PT] Essa dissertação tem como objetivo avaliar classificadores de aprendizado de máquina e suas técnicas no problema de detecção de fake news. Algoritmos preditivos nesse contexto podem produzir resultados diferentes de acordo com a variância da rotulação de datasets causada pela ambiguidade e subjetividade da semântica textual. O dataset LIAR foi utilizado nos experimentos desta dissertação. Este dataset foi criado a partir de dados da agência de checagem de fatos PolitiFact que consiste em rótulos com 6 classes ordinais que por sua vez posicionam as declarações políticas no intervalo entre completamente falsa e completamente verdadeira. O experimento original do autor do dataset alcançou 27.4% de acurácia usando redes neurais híbridas com camadas convolucionais CNN e recorrentes LSTM bidirecionais. A contribuição principal deste trabalho consiste na avaliação de classificadores mais simples usando diferentes técnicas de pré-processamento e seleção de atributos. Além disso, o trabalho explora a natureza ordinal das classes usando um método ensemble de classificadores binários já estabelecido na literatura.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia de Sistemas e ComputaçãoUFRJPedreira, Carlos Eduardohttp://lattes.cnpq.br/2718664296804955http://lattes.cnpq.br/0575233892637750Xexéo, Geraldo Bonorinohttp://lattes.cnpq.br/4783565791787812Lima, Priscila Machado VieiraDelgado, Carla Amor Divino MoreiraCoutinho, Igor Bichara de Azeredo2021-04-05T02:20:14Z2023-12-21T03:07:33Z2019-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/14047enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:07:33Zoai:pantheon.ufrj.br:11422/14047Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:07:33Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario Avaliação de classificadores de aprendizado de máquina em cenário multiclasse de detecção de fake news |
title |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario |
spellingShingle |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario Coutinho, Igor Bichara de Azeredo Fake news detection Ordinal classification Fake news feature extraction CNPQ::ENGENHARIAS |
title_short |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario |
title_full |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario |
title_fullStr |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario |
title_full_unstemmed |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario |
title_sort |
Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario |
author |
Coutinho, Igor Bichara de Azeredo |
author_facet |
Coutinho, Igor Bichara de Azeredo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pedreira, Carlos Eduardo http://lattes.cnpq.br/2718664296804955 http://lattes.cnpq.br/0575233892637750 Xexéo, Geraldo Bonorino http://lattes.cnpq.br/4783565791787812 Lima, Priscila Machado Vieira Delgado, Carla Amor Divino Moreira |
dc.contributor.author.fl_str_mv |
Coutinho, Igor Bichara de Azeredo |
dc.subject.por.fl_str_mv |
Fake news detection Ordinal classification Fake news feature extraction CNPQ::ENGENHARIAS |
topic |
Fake news detection Ordinal classification Fake news feature extraction CNPQ::ENGENHARIAS |
description |
[EN] This thesis intends to explore machine learning classifiers and techniques to address the problem of fake news detection. Prediction algorithms can generate different results in this problem due to variance in dataset labeling caused by ambiguity and subjectivity of semantic text. The LIAR Dataset was used in the experiments of this thesis. This dataset derived from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling that places political statements in the range between completely false and completely true statements. The original experiment that created the dataset achieved 27.4% class accuracy using hybrid CNN and Bi-Directional LSTM networks. The main contribution of this work consists of evaluating simpler classifiers focusing on using different preprocessing and feature selection techniques when modeling metadata and text features. Furthermore, this work explores the ordinal characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble method already established in the literature. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 2021-04-05T02:20:14Z 2023-12-21T03:07:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/14047 |
url |
http://hdl.handle.net/11422/14047 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815456013970571264 |