Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario

Detalhes bibliográficos
Autor(a) principal: Coutinho, Igor Bichara de Azeredo
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/14047
Resumo: [EN] This thesis intends to explore machine learning classifiers and techniques to address the problem of fake news detection. Prediction algorithms can generate different results in this problem due to variance in dataset labeling caused by ambiguity and subjectivity of semantic text. The LIAR Dataset was used in the experiments of this thesis. This dataset derived from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling that places political statements in the range between completely false and completely true statements. The original experiment that created the dataset achieved 27.4% class accuracy using hybrid CNN and Bi-Directional LSTM networks. The main contribution of this work consists of evaluating simpler classifiers focusing on using different preprocessing and feature selection techniques when modeling metadata and text features. Furthermore, this work explores the ordinal characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble method already established in the literature.
id UFRJ_39899cb883885245231002572209f456
oai_identifier_str oai:pantheon.ufrj.br:11422/14047
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenarioAvaliação de classificadores de aprendizado de máquina em cenário multiclasse de detecção de fake newsFake news detectionOrdinal classificationFake news feature extractionCNPQ::ENGENHARIAS[EN] This thesis intends to explore machine learning classifiers and techniques to address the problem of fake news detection. Prediction algorithms can generate different results in this problem due to variance in dataset labeling caused by ambiguity and subjectivity of semantic text. The LIAR Dataset was used in the experiments of this thesis. This dataset derived from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling that places political statements in the range between completely false and completely true statements. The original experiment that created the dataset achieved 27.4% class accuracy using hybrid CNN and Bi-Directional LSTM networks. The main contribution of this work consists of evaluating simpler classifiers focusing on using different preprocessing and feature selection techniques when modeling metadata and text features. Furthermore, this work explores the ordinal characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble method already established in the literature.[PT] Essa dissertação tem como objetivo avaliar classificadores de aprendizado de máquina e suas técnicas no problema de detecção de fake news. Algoritmos preditivos nesse contexto podem produzir resultados diferentes de acordo com a variância da rotulação de datasets causada pela ambiguidade e subjetividade da semântica textual. O dataset LIAR foi utilizado nos experimentos desta dissertação. Este dataset foi criado a partir de dados da agência de checagem de fatos PolitiFact que consiste em rótulos com 6 classes ordinais que por sua vez posicionam as declarações políticas no intervalo entre completamente falsa e completamente verdadeira. O experimento original do autor do dataset alcançou 27.4% de acurácia usando redes neurais híbridas com camadas convolucionais CNN e recorrentes LSTM bidirecionais. A contribuição principal deste trabalho consiste na avaliação de classificadores mais simples usando diferentes técnicas de pré-processamento e seleção de atributos. Além disso, o trabalho explora a natureza ordinal das classes usando um método ensemble de classificadores binários já estabelecido na literatura.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia de Sistemas e ComputaçãoUFRJPedreira, Carlos Eduardohttp://lattes.cnpq.br/2718664296804955http://lattes.cnpq.br/0575233892637750Xexéo, Geraldo Bonorinohttp://lattes.cnpq.br/4783565791787812Lima, Priscila Machado VieiraDelgado, Carla Amor Divino MoreiraCoutinho, Igor Bichara de Azeredo2021-04-05T02:20:14Z2023-12-21T03:07:33Z2019-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/14047enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:07:33Zoai:pantheon.ufrj.br:11422/14047Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:07:33Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
Avaliação de classificadores de aprendizado de máquina em cenário multiclasse de detecção de fake news
title Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
spellingShingle Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
Coutinho, Igor Bichara de Azeredo
Fake news detection
Ordinal classification
Fake news feature extraction
CNPQ::ENGENHARIAS
title_short Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
title_full Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
title_fullStr Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
title_full_unstemmed Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
title_sort Evaluation of machine learning classifiers in ordinal multiclass fake news detection scenario
author Coutinho, Igor Bichara de Azeredo
author_facet Coutinho, Igor Bichara de Azeredo
author_role author
dc.contributor.none.fl_str_mv Pedreira, Carlos Eduardo
http://lattes.cnpq.br/2718664296804955
http://lattes.cnpq.br/0575233892637750
Xexéo, Geraldo Bonorino
http://lattes.cnpq.br/4783565791787812
Lima, Priscila Machado Vieira
Delgado, Carla Amor Divino Moreira
dc.contributor.author.fl_str_mv Coutinho, Igor Bichara de Azeredo
dc.subject.por.fl_str_mv Fake news detection
Ordinal classification
Fake news feature extraction
CNPQ::ENGENHARIAS
topic Fake news detection
Ordinal classification
Fake news feature extraction
CNPQ::ENGENHARIAS
description [EN] This thesis intends to explore machine learning classifiers and techniques to address the problem of fake news detection. Prediction algorithms can generate different results in this problem due to variance in dataset labeling caused by ambiguity and subjectivity of semantic text. The LIAR Dataset was used in the experiments of this thesis. This dataset derived from PolitiFact fact-checking agency data which is composed of a 6-class ordinal labeling that places political statements in the range between completely false and completely true statements. The original experiment that created the dataset achieved 27.4% class accuracy using hybrid CNN and Bi-Directional LSTM networks. The main contribution of this work consists of evaluating simpler classifiers focusing on using different preprocessing and feature selection techniques when modeling metadata and text features. Furthermore, this work explores the ordinal characteristics of the class labels and uses simple binary classifiers in an ordinal ensemble method already established in the literature.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
2021-04-05T02:20:14Z
2023-12-21T03:07:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/14047
url http://hdl.handle.net/11422/14047
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815456013970571264