Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/12897 |
Resumo: | The use of nondestructive (NDT) ultrasound (UT) test is widely diffused in industry. The application of this technique to polymers is, however, almost nonexistent due to the difficulty in interpreting the results. Polyvinylidene polyfluoride (PVDF) has, among many applications, been used as a sealing layer in risers in the petroleum industry. One of the problems is precisely the inspection by nondestructive testing of this material. A certain polymers fenomenon is called whitening, which follows the deformation of the material, and thus can be used as a fault indicator. Aiming for a solution to this problem, it is proposed in this work the use of artificial intelligence in the classification and detection of whitening in PVDF specimen inspected by UT. The obtained data were analyzed and processed, choosing to use only the backscattered portion of the signal. The Fourier and discrete cosine transforms were used, in addition to the Savitzky-Golay filter in the processing of the signals before the feeding the network. The technique used is that of artificial neural networks as a multilayer perceptron. The training was done using the Python language and its machine learning libraries, such as TensorFlow and Keras, resulting in a classification network with more than 95% of accuracy. |
id |
UFRJ_3cbf30448afd0ed4a99a4407978fc225 |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/12897 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDFRedes NeuraisUltrassomCNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAThe use of nondestructive (NDT) ultrasound (UT) test is widely diffused in industry. The application of this technique to polymers is, however, almost nonexistent due to the difficulty in interpreting the results. Polyvinylidene polyfluoride (PVDF) has, among many applications, been used as a sealing layer in risers in the petroleum industry. One of the problems is precisely the inspection by nondestructive testing of this material. A certain polymers fenomenon is called whitening, which follows the deformation of the material, and thus can be used as a fault indicator. Aiming for a solution to this problem, it is proposed in this work the use of artificial intelligence in the classification and detection of whitening in PVDF specimen inspected by UT. The obtained data were analyzed and processed, choosing to use only the backscattered portion of the signal. The Fourier and discrete cosine transforms were used, in addition to the Savitzky-Golay filter in the processing of the signals before the feeding the network. The technique used is that of artificial neural networks as a multilayer perceptron. The training was done using the Python language and its machine learning libraries, such as TensorFlow and Keras, resulting in a classification network with more than 95% of accuracy.A utilização de ensaios não destrutivos (END) de ultrassom (UT) é amplamente difundido na indústria. A aplicação desta técnica em polímeros é, porém, quase inexistente devido à dificuldade na interpretação dos resultados. O polifluoreto de vinilideno (PVDF) tem, dentre inúmeras aplicações, sido utilizado como camada de estanqueidade em risers na indústria do petróleo. Um dos problemas é justamente a inspeção por meio de ensaios não destrutivos deste material. Um efeito presente em alguns polímeros é denominado whitening, que decorre da deformação desse material, e, dessa forma, pode ser utilizado como um indicador de defeito. Visando uma solução para este problema, é proposta neste trabalho a utilização de inteligência artificial na classificação e detecção de whitening em corpos de prova de PVDF inspecionados por UT. Os dados obtidos foram analisados e processados, escolhendo-se utilizar apenas a porção retroespalhada do sinal. Foram utilizadas as transformadas de Fourier e discreta dos cossenos, além do filtro de Savitzky-Golay no processamento dos sinais antes da alimentação da rede. A técnica utilizada é a de redes neurais artificiais como um perceptron multicamadas. Foi feito o treinamento fazendo uso da linguagem Python e suas bibliotecas de aprendizado de máquina, como TensorFlow e Keras, resultando numa rede classificadora com mais de 95% de acertos.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia Metalúrgica e de MateriaisUFRJPereira, Gabriela Ribeirohttp://lattes.cnpq.br/3243313265625272http://lattes.cnpq.br/3822760624263780Costa Neto, Celio Albano daSoares, Sergio DamascenoLondres, Guilherme Lopes2020-08-13T01:05:40Z2023-12-21T03:02:13Z2018-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/12897porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:02:13Zoai:pantheon.ufrj.br:11422/12897Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:02:13Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
title |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
spellingShingle |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF Londres, Guilherme Lopes Redes Neurais Ultrassom CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
title_short |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
title_full |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
title_fullStr |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
title_full_unstemmed |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
title_sort |
Desenvolvimento de redes neurais artificiais para classificação de ensaios não destrutivos de ultrassom em PVDF |
author |
Londres, Guilherme Lopes |
author_facet |
Londres, Guilherme Lopes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Gabriela Ribeiro http://lattes.cnpq.br/3243313265625272 http://lattes.cnpq.br/3822760624263780 Costa Neto, Celio Albano da Soares, Sergio Damasceno |
dc.contributor.author.fl_str_mv |
Londres, Guilherme Lopes |
dc.subject.por.fl_str_mv |
Redes Neurais Ultrassom CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
topic |
Redes Neurais Ultrassom CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA |
description |
The use of nondestructive (NDT) ultrasound (UT) test is widely diffused in industry. The application of this technique to polymers is, however, almost nonexistent due to the difficulty in interpreting the results. Polyvinylidene polyfluoride (PVDF) has, among many applications, been used as a sealing layer in risers in the petroleum industry. One of the problems is precisely the inspection by nondestructive testing of this material. A certain polymers fenomenon is called whitening, which follows the deformation of the material, and thus can be used as a fault indicator. Aiming for a solution to this problem, it is proposed in this work the use of artificial intelligence in the classification and detection of whitening in PVDF specimen inspected by UT. The obtained data were analyzed and processed, choosing to use only the backscattered portion of the signal. The Fourier and discrete cosine transforms were used, in addition to the Savitzky-Golay filter in the processing of the signals before the feeding the network. The technique used is that of artificial neural networks as a multilayer perceptron. The training was done using the Python language and its machine learning libraries, such as TensorFlow and Keras, resulting in a classification network with more than 95% of accuracy. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 2020-08-13T01:05:40Z 2023-12-21T03:02:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/12897 |
url |
http://hdl.handle.net/11422/12897 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Metalúrgica e de Materiais UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Metalúrgica e de Materiais UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815456009560260608 |