A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/6338 |
Resumo: | The widespread of underdetermined systems has brought forth a variety of new algorithmic solutions, which capitalize on the Compressed Sensing (CS) of sparse data. While well known greedy or iterative threshold type of CS recursions take the form of an adaptive filter followed by a proximal operator, this is no different in spirit from the role of block iterative decision-feedback equalizers (BI-DFE), where structure is roughly exploited by the signal constellation slicer. By taking advantage of the intrinsic sparsity of signal modulations in a communications scenario, the concept of interblock interference (IBI) can be approached more cunningly in light of CS concepts, whereby the optimal feedback of detected symbols is devised adaptively. The new DFE takes the form of a more efficient re-estimation scheme, proposed under recursive-least-squares based adaptations. Whenever suitable, these recursions are derived under a reduced-complexity, widely-linear formulation, which further reduces the minimum-mean-square-error (MMSE) in comparison with traditional strictly-linear approaches. Besides maximizing system throughput, the new algorithms exhibit significantly higher performance when compared to existing methods. Our reasoning will also show that a properly formulated BI-DFE turns out to be a powerful CS algorithm itself. A new algorithm, referred to as CS-Block DFE (CS-BDFE) exhibits improved convergence and detection when compared to first order methods, thus outperforming the state-of-the-art Complex Approximate Message Passing (CAMP) recursions. The merits of the new recursions are illustrated under a novel 3D MIMO Radar formulation, where the CAMP algorithm is shown to fail with respect to important performance measures. |
id |
UFRJ_59aa8394494cc922442781c7e3bb2e69 |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/6338 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstructionEngenharia elétricaEqualização xConexões e aplicações ao radarSensor de compressãoCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAThe widespread of underdetermined systems has brought forth a variety of new algorithmic solutions, which capitalize on the Compressed Sensing (CS) of sparse data. While well known greedy or iterative threshold type of CS recursions take the form of an adaptive filter followed by a proximal operator, this is no different in spirit from the role of block iterative decision-feedback equalizers (BI-DFE), where structure is roughly exploited by the signal constellation slicer. By taking advantage of the intrinsic sparsity of signal modulations in a communications scenario, the concept of interblock interference (IBI) can be approached more cunningly in light of CS concepts, whereby the optimal feedback of detected symbols is devised adaptively. The new DFE takes the form of a more efficient re-estimation scheme, proposed under recursive-least-squares based adaptations. Whenever suitable, these recursions are derived under a reduced-complexity, widely-linear formulation, which further reduces the minimum-mean-square-error (MMSE) in comparison with traditional strictly-linear approaches. Besides maximizing system throughput, the new algorithms exhibit significantly higher performance when compared to existing methods. Our reasoning will also show that a properly formulated BI-DFE turns out to be a powerful CS algorithm itself. A new algorithm, referred to as CS-Block DFE (CS-BDFE) exhibits improved convergence and detection when compared to first order methods, thus outperforming the state-of-the-art Complex Approximate Message Passing (CAMP) recursions. The merits of the new recursions are illustrated under a novel 3D MIMO Radar formulation, where the CAMP algorithm is shown to fail with respect to important performance measures.A proliferação de sistemas sub-determinados trouxe a tona uma gama de novas soluções algorítmicas, baseadas no sensoriamento compressivo (CS) de dados esparsos. As recursões do tipo greedy e de limitação iterativa para CS se apresentam comumente como um filtro adaptativo seguido de um operador proximal, não muito diferente dos equalizadores de realimentação de decisão iterativos em blocos (BI-DFE), em que um decisor explora a estrutura do sinal de constelação. A partir da esparsidade intrínseca presente na modulação de sinais no contexto de comunicações, a interferência entre blocos (IBI) pode ser abordada utilizando-se o conceito de CS, onde a realimentação ótima de símbolos detectados é realizada de forma adaptativa. O novo DFE se apresenta como um esquema mais eficiente de reestimação, baseado na atualização por mínimos quadrados recursivos (RLS). Sempre que possível estas recursões são propostas via formulação linear no sentido amplo, o que reduz ainda mais o erro médio quadrático mínimo (MMSE) em comparação com abordagens tradicionais. Além de maximizar a taxa de transferência de informação, o novo algoritmo exibe um desempenho significativamente superior quando comparado aos métodos existentes. Também mostraremos que um equalizador BI-DFE formulado adequadamente se torna um poderoso algoritmo de CS. O novo algoritmo CS-BDFE apresenta convergência e detecção aprimoradas, quando comparado a métodos de primeira ordem, superando as recursões de Passagem de Mensagem Aproximada para Complexos (CAMP). Os méritos das novas recursões são ilustrados através de um modelo tridimensional para radares MIMO recentemente proposto, onde o algoritmo CAMP falha em aspectos importantes de medidas de desempenho.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia ElétricaUFRJMerched, Ricardohttp://lattes.cnpq.br/5984975038339461Resende Junior, Fernando Gil ViannaPetraglia, Mariane RemboldNascimento., Vítor HeloizPetraglia, AntônioPinto, Rafael Gustavo da Cunha Pereira2019-02-01T16:00:34Z2023-12-21T03:03:12Z2017-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://hdl.handle.net/11422/6338enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:03:12Zoai:pantheon.ufrj.br:11422/6338Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:03:12Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
title |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
spellingShingle |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction Pinto, Rafael Gustavo da Cunha Pereira Engenharia elétrica Equalização xConexões e aplicações ao radar Sensor de compressão CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
title_full |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
title_fullStr |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
title_full_unstemmed |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
title_sort |
A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction |
author |
Pinto, Rafael Gustavo da Cunha Pereira |
author_facet |
Pinto, Rafael Gustavo da Cunha Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Merched, Ricardo http://lattes.cnpq.br/5984975038339461 Resende Junior, Fernando Gil Vianna Petraglia, Mariane Rembold Nascimento., Vítor Heloiz Petraglia, Antônio |
dc.contributor.author.fl_str_mv |
Pinto, Rafael Gustavo da Cunha Pereira |
dc.subject.por.fl_str_mv |
Engenharia elétrica Equalização xConexões e aplicações ao radar Sensor de compressão CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Engenharia elétrica Equalização xConexões e aplicações ao radar Sensor de compressão CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
The widespread of underdetermined systems has brought forth a variety of new algorithmic solutions, which capitalize on the Compressed Sensing (CS) of sparse data. While well known greedy or iterative threshold type of CS recursions take the form of an adaptive filter followed by a proximal operator, this is no different in spirit from the role of block iterative decision-feedback equalizers (BI-DFE), where structure is roughly exploited by the signal constellation slicer. By taking advantage of the intrinsic sparsity of signal modulations in a communications scenario, the concept of interblock interference (IBI) can be approached more cunningly in light of CS concepts, whereby the optimal feedback of detected symbols is devised adaptively. The new DFE takes the form of a more efficient re-estimation scheme, proposed under recursive-least-squares based adaptations. Whenever suitable, these recursions are derived under a reduced-complexity, widely-linear formulation, which further reduces the minimum-mean-square-error (MMSE) in comparison with traditional strictly-linear approaches. Besides maximizing system throughput, the new algorithms exhibit significantly higher performance when compared to existing methods. Our reasoning will also show that a properly formulated BI-DFE turns out to be a powerful CS algorithm itself. A new algorithm, referred to as CS-Block DFE (CS-BDFE) exhibits improved convergence and detection when compared to first order methods, thus outperforming the state-of-the-art Complex Approximate Message Passing (CAMP) recursions. The merits of the new recursions are illustrated under a novel 3D MIMO Radar formulation, where the CAMP algorithm is shown to fail with respect to important performance measures. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 2019-02-01T16:00:34Z 2023-12-21T03:03:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/6338 |
url |
http://hdl.handle.net/11422/6338 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815455981281214464 |