Model predictive control of heavy haul trains

Detalhes bibliográficos
Autor(a) principal: Neves, Carolina Calvo Pose Santos
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/9488
Resumo: In railroad operations, locomotive engineers nowadays use a personalized driving pattern for each track/train combination. This plan serves as a guide reference for punctuality and energetically efficient travels. However, many safety issues related to the high forces experimented by the trains couplers persist, provoking accidents and derailments, which delay the logistic chain and raise operational costs. This Masters Dissertation describes a modeling, simulation and control methodology for real freight trains operation dealing with the described challenge. In fact, this work intends to propose a Model Predictive Control automatic driving procedure taking into account a weighted multi-objective minimization that can reduce forces in the couplings without increasing significantly the trip time or fuel consumption. A moving horizon technique is adopted to predict the train handling effects of the terrain forces interacting with train tractive and braking forces. A heavy haul train dynamic simulator is developed based on the described nonlinear model and numerical simulations illustrate the effectiveness of the considered scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and Minas Gerais in Brazil with real train configuration.
id UFRJ_83da4755620ef919dc72046b8a8962df
oai_identifier_str oai:pantheon.ufrj.br:11422/9488
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Model predictive control of heavy haul trainsEngenharia elétricaTransporte ferroviárioControle preditivo baseado em modeloCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAIn railroad operations, locomotive engineers nowadays use a personalized driving pattern for each track/train combination. This plan serves as a guide reference for punctuality and energetically efficient travels. However, many safety issues related to the high forces experimented by the trains couplers persist, provoking accidents and derailments, which delay the logistic chain and raise operational costs. This Masters Dissertation describes a modeling, simulation and control methodology for real freight trains operation dealing with the described challenge. In fact, this work intends to propose a Model Predictive Control automatic driving procedure taking into account a weighted multi-objective minimization that can reduce forces in the couplings without increasing significantly the trip time or fuel consumption. A moving horizon technique is adopted to predict the train handling effects of the terrain forces interacting with train tractive and braking forces. A heavy haul train dynamic simulator is developed based on the described nonlinear model and numerical simulations illustrate the effectiveness of the considered scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and Minas Gerais in Brazil with real train configuration.Nas operações ferroviárias, atualmente há um padrão de condução personalizado para cada combinação de trem e rota. Esse plano guia os maquinistas em termos de uma direção que seja pontual e energeticamente eficiente. No entanto, os esforços elevados nos acopladores desses trens ainda provocam acidentes e problemas de descarrilhamentos, atrasando a cadeia logística e elevando os custos operacionais. Esta dissertação de mestrado descreve uma proposta de modelagem, simulação e controle de trens de carga baseada em dados reais para lidar com esse desafio. De fato, este trabalho propõe um modelo preditivo baseado em modelo para a condução automática dos trens, levando em consideração uma minimização multiobjetivo ponderada a fim de reduzir as forças nos engates e garantir uma operação mais segura, sem que isso se traduza em relevante gasto de combustível ou aumento de tempo de viagem considerável. A técnica de janela móvel é adotada para a predição do comportamento dinâmico do sistema, incluindo as forças de conexão dos vagões decorrentes do efeito conjunto do relevo da rota e dos esforços de tração e de freio aplicados ao trem. Um simulador do comportamento dinâmico de trens de carga é sugerido a partir do modelo não linear apresentado e as simulações numéricas ilustram a efetividade do esquema considerado para reduzir as forças nos acopladores. A metodologia é aplicada a um trem real simulado nos trilhos da Ferrovia do Aço que corta os estados de Minas Gerais, Rio de Janeiro e São Paulo.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia ElétricaUFRJPeixoto, Alessandro Jacoudhttp://lattes.cnpq.br/6246688821056691Costa, Ramon RomankeviciusLeite, Antonio CandeaCunha, José Paulo Vilela Soares daNeves, Carolina Calvo Pose Santos2019-09-12T17:53:00Z2023-12-21T03:01:23Z2018-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/9488enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:01:23Zoai:pantheon.ufrj.br:11422/9488Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:01:23Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Model predictive control of heavy haul trains
title Model predictive control of heavy haul trains
spellingShingle Model predictive control of heavy haul trains
Neves, Carolina Calvo Pose Santos
Engenharia elétrica
Transporte ferroviário
Controle preditivo baseado em modelo
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Model predictive control of heavy haul trains
title_full Model predictive control of heavy haul trains
title_fullStr Model predictive control of heavy haul trains
title_full_unstemmed Model predictive control of heavy haul trains
title_sort Model predictive control of heavy haul trains
author Neves, Carolina Calvo Pose Santos
author_facet Neves, Carolina Calvo Pose Santos
author_role author
dc.contributor.none.fl_str_mv Peixoto, Alessandro Jacoud
http://lattes.cnpq.br/6246688821056691
Costa, Ramon Romankevicius
Leite, Antonio Candea
Cunha, José Paulo Vilela Soares da
dc.contributor.author.fl_str_mv Neves, Carolina Calvo Pose Santos
dc.subject.por.fl_str_mv Engenharia elétrica
Transporte ferroviário
Controle preditivo baseado em modelo
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Engenharia elétrica
Transporte ferroviário
Controle preditivo baseado em modelo
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description In railroad operations, locomotive engineers nowadays use a personalized driving pattern for each track/train combination. This plan serves as a guide reference for punctuality and energetically efficient travels. However, many safety issues related to the high forces experimented by the trains couplers persist, provoking accidents and derailments, which delay the logistic chain and raise operational costs. This Masters Dissertation describes a modeling, simulation and control methodology for real freight trains operation dealing with the described challenge. In fact, this work intends to propose a Model Predictive Control automatic driving procedure taking into account a weighted multi-objective minimization that can reduce forces in the couplings without increasing significantly the trip time or fuel consumption. A moving horizon technique is adopted to predict the train handling effects of the terrain forces interacting with train tractive and braking forces. A heavy haul train dynamic simulator is developed based on the described nonlinear model and numerical simulations illustrate the effectiveness of the considered scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and Minas Gerais in Brazil with real train configuration.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
2019-09-12T17:53:00Z
2023-12-21T03:01:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/9488
url http://hdl.handle.net/11422/9488
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Elétrica
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455995400290304