Model predictive control of heavy haul trains
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/9488 |
Resumo: | In railroad operations, locomotive engineers nowadays use a personalized driving pattern for each track/train combination. This plan serves as a guide reference for punctuality and energetically efficient travels. However, many safety issues related to the high forces experimented by the trains couplers persist, provoking accidents and derailments, which delay the logistic chain and raise operational costs. This Masters Dissertation describes a modeling, simulation and control methodology for real freight trains operation dealing with the described challenge. In fact, this work intends to propose a Model Predictive Control automatic driving procedure taking into account a weighted multi-objective minimization that can reduce forces in the couplings without increasing significantly the trip time or fuel consumption. A moving horizon technique is adopted to predict the train handling effects of the terrain forces interacting with train tractive and braking forces. A heavy haul train dynamic simulator is developed based on the described nonlinear model and numerical simulations illustrate the effectiveness of the considered scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and Minas Gerais in Brazil with real train configuration. |
id |
UFRJ_83da4755620ef919dc72046b8a8962df |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/9488 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Model predictive control of heavy haul trainsEngenharia elétricaTransporte ferroviárioControle preditivo baseado em modeloCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAIn railroad operations, locomotive engineers nowadays use a personalized driving pattern for each track/train combination. This plan serves as a guide reference for punctuality and energetically efficient travels. However, many safety issues related to the high forces experimented by the trains couplers persist, provoking accidents and derailments, which delay the logistic chain and raise operational costs. This Masters Dissertation describes a modeling, simulation and control methodology for real freight trains operation dealing with the described challenge. In fact, this work intends to propose a Model Predictive Control automatic driving procedure taking into account a weighted multi-objective minimization that can reduce forces in the couplings without increasing significantly the trip time or fuel consumption. A moving horizon technique is adopted to predict the train handling effects of the terrain forces interacting with train tractive and braking forces. A heavy haul train dynamic simulator is developed based on the described nonlinear model and numerical simulations illustrate the effectiveness of the considered scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and Minas Gerais in Brazil with real train configuration.Nas operações ferroviárias, atualmente há um padrão de condução personalizado para cada combinação de trem e rota. Esse plano guia os maquinistas em termos de uma direção que seja pontual e energeticamente eficiente. No entanto, os esforços elevados nos acopladores desses trens ainda provocam acidentes e problemas de descarrilhamentos, atrasando a cadeia logística e elevando os custos operacionais. Esta dissertação de mestrado descreve uma proposta de modelagem, simulação e controle de trens de carga baseada em dados reais para lidar com esse desafio. De fato, este trabalho propõe um modelo preditivo baseado em modelo para a condução automática dos trens, levando em consideração uma minimização multiobjetivo ponderada a fim de reduzir as forças nos engates e garantir uma operação mais segura, sem que isso se traduza em relevante gasto de combustível ou aumento de tempo de viagem considerável. A técnica de janela móvel é adotada para a predição do comportamento dinâmico do sistema, incluindo as forças de conexão dos vagões decorrentes do efeito conjunto do relevo da rota e dos esforços de tração e de freio aplicados ao trem. Um simulador do comportamento dinâmico de trens de carga é sugerido a partir do modelo não linear apresentado e as simulações numéricas ilustram a efetividade do esquema considerado para reduzir as forças nos acopladores. A metodologia é aplicada a um trem real simulado nos trilhos da Ferrovia do Aço que corta os estados de Minas Gerais, Rio de Janeiro e São Paulo.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia ElétricaUFRJPeixoto, Alessandro Jacoudhttp://lattes.cnpq.br/6246688821056691Costa, Ramon RomankeviciusLeite, Antonio CandeaCunha, José Paulo Vilela Soares daNeves, Carolina Calvo Pose Santos2019-09-12T17:53:00Z2023-12-21T03:01:23Z2018-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/9488enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:01:23Zoai:pantheon.ufrj.br:11422/9488Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:01:23Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Model predictive control of heavy haul trains |
title |
Model predictive control of heavy haul trains |
spellingShingle |
Model predictive control of heavy haul trains Neves, Carolina Calvo Pose Santos Engenharia elétrica Transporte ferroviário Controle preditivo baseado em modelo CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Model predictive control of heavy haul trains |
title_full |
Model predictive control of heavy haul trains |
title_fullStr |
Model predictive control of heavy haul trains |
title_full_unstemmed |
Model predictive control of heavy haul trains |
title_sort |
Model predictive control of heavy haul trains |
author |
Neves, Carolina Calvo Pose Santos |
author_facet |
Neves, Carolina Calvo Pose Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Peixoto, Alessandro Jacoud http://lattes.cnpq.br/6246688821056691 Costa, Ramon Romankevicius Leite, Antonio Candea Cunha, José Paulo Vilela Soares da |
dc.contributor.author.fl_str_mv |
Neves, Carolina Calvo Pose Santos |
dc.subject.por.fl_str_mv |
Engenharia elétrica Transporte ferroviário Controle preditivo baseado em modelo CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Engenharia elétrica Transporte ferroviário Controle preditivo baseado em modelo CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
In railroad operations, locomotive engineers nowadays use a personalized driving pattern for each track/train combination. This plan serves as a guide reference for punctuality and energetically efficient travels. However, many safety issues related to the high forces experimented by the trains couplers persist, provoking accidents and derailments, which delay the logistic chain and raise operational costs. This Masters Dissertation describes a modeling, simulation and control methodology for real freight trains operation dealing with the described challenge. In fact, this work intends to propose a Model Predictive Control automatic driving procedure taking into account a weighted multi-objective minimization that can reduce forces in the couplings without increasing significantly the trip time or fuel consumption. A moving horizon technique is adopted to predict the train handling effects of the terrain forces interacting with train tractive and braking forces. A heavy haul train dynamic simulator is developed based on the described nonlinear model and numerical simulations illustrate the effectiveness of the considered scheme to reduce coupler forces. The methodology is applied to the "Ferrovia do Aço" railroad that passes through the States of Rio de Janeiro, São Paulo and Minas Gerais in Brazil with real train configuration. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 2019-09-12T17:53:00Z 2023-12-21T03:01:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/9488 |
url |
http://hdl.handle.net/11422/9488 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Elétrica UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815455995400290304 |