Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects

Detalhes bibliográficos
Autor(a) principal: Knupp, Diego Campos
Data de Publicação: 2013
Outros Autores: Cotta, Renato Machado, Naveira-Cotta, Carolina Palma
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/8533
Resumo: Heat transfer in microchannels is analyzed, including the coupling between the regions upstream and downstream of the heat transfer section and taking into account the wall conjugation and axial diffusion effects which are often of relevance in microchannels. The methodology is based on a recently proposed single-domain formulation for modeling the heat transfer phenomena simultaneously at the fluid stream and the channel walls, and applying the generalized integral transform technique (GITT) to find a hybrid numerical–analytical solution to the unified partial differential energy equation. The proposed mathematical model involves coefficients represented as space-dependent functions, with abrupt transitions at the fluid–wall interfaces, which carry the information concerning the transition of the two domains, unifying the model into a single-domain formulation with variable coefficients. Convergence of the proposed eigenfunction expansions is thoroughly investigated and the physical analysis is focused on the effects of the coupling between the downstream and the upstream flow regions.
id UFRJ_876cfa19431c86f628ef82e1abc5028f
oai_identifier_str oai:pantheon.ufrj.br:11422/8533
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation EffectsGeneralized integral transform techniqueThermal microsystemsHeat transferCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSHeat transfer in microchannels is analyzed, including the coupling between the regions upstream and downstream of the heat transfer section and taking into account the wall conjugation and axial diffusion effects which are often of relevance in microchannels. The methodology is based on a recently proposed single-domain formulation for modeling the heat transfer phenomena simultaneously at the fluid stream and the channel walls, and applying the generalized integral transform technique (GITT) to find a hybrid numerical–analytical solution to the unified partial differential energy equation. The proposed mathematical model involves coefficients represented as space-dependent functions, with abrupt transitions at the fluid–wall interfaces, which carry the information concerning the transition of the two domains, unifying the model into a single-domain formulation with variable coefficients. Convergence of the proposed eigenfunction expansions is thoroughly investigated and the physical analysis is focused on the effects of the coupling between the downstream and the upstream flow regions.Indisponível.Taylor & FrancisBrasilNúcleo Interdisciplinar de Dinâmica dos Fluidos2019-06-26T17:34:10Z2023-12-21T03:06:04Z2013-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1040-7790http://hdl.handle.net/11422/853310.1080/10407790.2013.810535engNumerical Heat Transfer, Part B FundamentalsKnupp, Diego CamposCotta, Renato MachadoNaveira-Cotta, Carolina Palmainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:06:04Zoai:pantheon.ufrj.br:11422/8533Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:06:04Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
title Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
spellingShingle Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
Knupp, Diego Campos
Generalized integral transform technique
Thermal microsystems
Heat transfer
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
title_short Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
title_full Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
title_fullStr Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
title_full_unstemmed Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
title_sort Heat Transfer in Microchannels with Upstream–Downstream Regions Coupling and Wall Conjugation Effects
author Knupp, Diego Campos
author_facet Knupp, Diego Campos
Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
author_role author
author2 Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
author2_role author
author
dc.contributor.author.fl_str_mv Knupp, Diego Campos
Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
dc.subject.por.fl_str_mv Generalized integral transform technique
Thermal microsystems
Heat transfer
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
topic Generalized integral transform technique
Thermal microsystems
Heat transfer
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
description Heat transfer in microchannels is analyzed, including the coupling between the regions upstream and downstream of the heat transfer section and taking into account the wall conjugation and axial diffusion effects which are often of relevance in microchannels. The methodology is based on a recently proposed single-domain formulation for modeling the heat transfer phenomena simultaneously at the fluid stream and the channel walls, and applying the generalized integral transform technique (GITT) to find a hybrid numerical–analytical solution to the unified partial differential energy equation. The proposed mathematical model involves coefficients represented as space-dependent functions, with abrupt transitions at the fluid–wall interfaces, which carry the information concerning the transition of the two domains, unifying the model into a single-domain formulation with variable coefficients. Convergence of the proposed eigenfunction expansions is thoroughly investigated and the physical analysis is focused on the effects of the coupling between the downstream and the upstream flow regions.
publishDate 2013
dc.date.none.fl_str_mv 2013-09-17
2019-06-26T17:34:10Z
2023-12-21T03:06:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1040-7790
http://hdl.handle.net/11422/8533
10.1080/10407790.2013.810535
identifier_str_mv 1040-7790
10.1080/10407790.2013.810535
url http://hdl.handle.net/11422/8533
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Numerical Heat Transfer, Part B Fundamentals
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
publisher.none.fl_str_mv Taylor & Francis
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455991202840576