Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/8787 |
Resumo: | This paper presents a formal exact solution of the linear advection–diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection–diffusion equation into an exclusively diffusive equation. The new diffusive problem is solved analytically using the classic version of Generalized Integral Transform Technique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the advection–diffusion transport equation. |
id |
UFRJ_91fec7f0605e92fa3756602e61258cbb |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/8787 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform techniqueAnalytical solutionTransport equationIntegral transformsCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSThis paper presents a formal exact solution of the linear advection–diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection–diffusion equation into an exclusively diffusive equation. The new diffusive problem is solved analytically using the classic version of Generalized Integral Transform Technique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the advection–diffusion transport equation.Indisponível.ElsevierBrasilNúcleo Interdisciplinar de Dinâmica dos Fluidos2019-07-12T17:45:46Z2023-12-21T03:06:13Z2009-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0017-9310http://hdl.handle.net/11422/878710.1016/j.ijheatmasstransfer.2009.02.002engInternational Journal of Heat and Mass TransferGuerrero, Jesús Salvador PérezPimentel, Luiz Claudio GomesSkaggs, Todd H.Van Genuchten, Martinus Theodorusinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:06:13Zoai:pantheon.ufrj.br:11422/8787Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:06:13Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
title |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
spellingShingle |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique Guerrero, Jesús Salvador Pérez Analytical solution Transport equation Integral transforms CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS |
title_short |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
title_full |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
title_fullStr |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
title_full_unstemmed |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
title_sort |
Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique |
author |
Guerrero, Jesús Salvador Pérez |
author_facet |
Guerrero, Jesús Salvador Pérez Pimentel, Luiz Claudio Gomes Skaggs, Todd H. Van Genuchten, Martinus Theodorus |
author_role |
author |
author2 |
Pimentel, Luiz Claudio Gomes Skaggs, Todd H. Van Genuchten, Martinus Theodorus |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Guerrero, Jesús Salvador Pérez Pimentel, Luiz Claudio Gomes Skaggs, Todd H. Van Genuchten, Martinus Theodorus |
dc.subject.por.fl_str_mv |
Analytical solution Transport equation Integral transforms CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS |
topic |
Analytical solution Transport equation Integral transforms CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS |
description |
This paper presents a formal exact solution of the linear advection–diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection–diffusion equation into an exclusively diffusive equation. The new diffusive problem is solved analytically using the classic version of Generalized Integral Transform Technique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the advection–diffusion transport equation. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03-11 2019-07-12T17:45:46Z 2023-12-21T03:06:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0017-9310 http://hdl.handle.net/11422/8787 10.1016/j.ijheatmasstransfer.2009.02.002 |
identifier_str_mv |
0017-9310 10.1016/j.ijheatmasstransfer.2009.02.002 |
url |
http://hdl.handle.net/11422/8787 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Heat and Mass Transfer |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier Brasil Núcleo Interdisciplinar de Dinâmica dos Fluidos |
publisher.none.fl_str_mv |
Elsevier Brasil Núcleo Interdisciplinar de Dinâmica dos Fluidos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815455992615272448 |