Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique

Detalhes bibliográficos
Autor(a) principal: Guerrero, Jesús Salvador Pérez
Data de Publicação: 2009
Outros Autores: Pimentel, Luiz Claudio Gomes, Skaggs, Todd H., Van Genuchten, Martinus Theodorus
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/8787
Resumo: This paper presents a formal exact solution of the linear advection–diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection–diffusion equation into an exclusively diffusive equation. The new diffusive problem is solved analytically using the classic version of Generalized Integral Transform Technique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the advection–diffusion transport equation.
id UFRJ_91fec7f0605e92fa3756602e61258cbb
oai_identifier_str oai:pantheon.ufrj.br:11422/8787
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform techniqueAnalytical solutionTransport equationIntegral transformsCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSThis paper presents a formal exact solution of the linear advection–diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection–diffusion equation into an exclusively diffusive equation. The new diffusive problem is solved analytically using the classic version of Generalized Integral Transform Technique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the advection–diffusion transport equation.Indisponível.ElsevierBrasilNúcleo Interdisciplinar de Dinâmica dos Fluidos2019-07-12T17:45:46Z2023-12-21T03:06:13Z2009-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0017-9310http://hdl.handle.net/11422/878710.1016/j.ijheatmasstransfer.2009.02.002engInternational Journal of Heat and Mass TransferGuerrero, Jesús Salvador PérezPimentel, Luiz Claudio GomesSkaggs, Todd H.Van Genuchten, Martinus Theodorusinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:06:13Zoai:pantheon.ufrj.br:11422/8787Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:06:13Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
title Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
spellingShingle Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
Guerrero, Jesús Salvador Pérez
Analytical solution
Transport equation
Integral transforms
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
title_short Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
title_full Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
title_fullStr Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
title_full_unstemmed Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
title_sort Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique
author Guerrero, Jesús Salvador Pérez
author_facet Guerrero, Jesús Salvador Pérez
Pimentel, Luiz Claudio Gomes
Skaggs, Todd H.
Van Genuchten, Martinus Theodorus
author_role author
author2 Pimentel, Luiz Claudio Gomes
Skaggs, Todd H.
Van Genuchten, Martinus Theodorus
author2_role author
author
author
dc.contributor.author.fl_str_mv Guerrero, Jesús Salvador Pérez
Pimentel, Luiz Claudio Gomes
Skaggs, Todd H.
Van Genuchten, Martinus Theodorus
dc.subject.por.fl_str_mv Analytical solution
Transport equation
Integral transforms
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
topic Analytical solution
Transport equation
Integral transforms
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
description This paper presents a formal exact solution of the linear advection–diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection–diffusion equation into an exclusively diffusive equation. The new diffusive problem is solved analytically using the classic version of Generalized Integral Transform Technique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the advection–diffusion transport equation.
publishDate 2009
dc.date.none.fl_str_mv 2009-03-11
2019-07-12T17:45:46Z
2023-12-21T03:06:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0017-9310
http://hdl.handle.net/11422/8787
10.1016/j.ijheatmasstransfer.2009.02.002
identifier_str_mv 0017-9310
10.1016/j.ijheatmasstransfer.2009.02.002
url http://hdl.handle.net/11422/8787
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Heat and Mass Transfer
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
publisher.none.fl_str_mv Elsevier
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455992615272448