A state-of-the-art of physics-informed neural networks in engineering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/15774 |
Resumo: | Machine learning techniques have gained space in the industrial scenario as a tool to convert the increasing flux of information (data) in process improvement. Among these techniques, neural networks has got much attention due to their universal approximators capacity, of which performance can be improved by providing previous physical knowledge: one has, therefore, the development of the so called Physicsinformed neural networks (PINN). In such context and having noticed a “gap” in the works related on this topics and in the diffusion of this theme in the School of Chemistry, this work proposes a state-of-the-art of the mentioned technique. Particular interesting concerning PINN in fluid mechanics and heat transfer has been noticed. Moreover, PINN have been pointed as important tools for solving forward and inverse problems. Finally, through practical examples, this work has shown the use of neural networks for solving one particular example in chemical engineering without informing the physics of the problem (obtaining the friction factor) and using the differential equation that describes it (solving the 1D heat diffusion equation). |
id |
UFRJ_b64145e52470eda4b01c0b4aa39caffc |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/15774 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
A state-of-the-art of physics-informed neural networks in engineeringAprendizado computacionalRedes neuraisModelos não linearesMachine learningNeural networksNonlinear dynamicsCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAMachine learning techniques have gained space in the industrial scenario as a tool to convert the increasing flux of information (data) in process improvement. Among these techniques, neural networks has got much attention due to their universal approximators capacity, of which performance can be improved by providing previous physical knowledge: one has, therefore, the development of the so called Physicsinformed neural networks (PINN). In such context and having noticed a “gap” in the works related on this topics and in the diffusion of this theme in the School of Chemistry, this work proposes a state-of-the-art of the mentioned technique. Particular interesting concerning PINN in fluid mechanics and heat transfer has been noticed. Moreover, PINN have been pointed as important tools for solving forward and inverse problems. Finally, through practical examples, this work has shown the use of neural networks for solving one particular example in chemical engineering without informing the physics of the problem (obtaining the friction factor) and using the differential equation that describes it (solving the 1D heat diffusion equation).Técnicas de machine learning vêm ganhando cada vez mais espaço no cenário industrial no intuito de converter o crescente fluxo de informação (data) em melhorias de processos. Entre tais técnicas, as redes neuronais se destacam devido à sua capacidade de aproximador universal de funções, cuja performance pode ser enriquecida ao se fornecer conhecimentos físicos prévios: tem-se, então, o desenvolvimento das Physics-informed neural networks (PINN). Nesse contexto e observando-se um “gap” na produção de trabalhos relacionados ao tema e da difusão dessa temática na grade de formação dos cursos da Escola de Química, esse trabalho se propõe a realizar um estado da arte da técnica mencionada. Observou-se interesse particular das PINN para aplicações em mecânica dos fluidos e transferência de calor. Ademais, as PINN se mostram ferramentas importantes tanto para a resolução de problemas ditos “diretos” quanto “indiretos”. Por fim, através de exemplos práticos, constatou-se a capacidade de se aproximar funções de interesse particular na indústria química usando-se redes neurais sem nenhuma informação física do problema (obtenção do fator de atrito) e utilizando-se a equação diferencial que descreve o problema (resolução da equação de difusão em 1D).Universidade Federal do Rio de JaneiroBrasilEscola de QuímicaUFRJSantos, Fábio Pereira doshttp://lattes.cnpq.br/3266981988847625http://lattes.cnpq.br/3712793523456001Reis, Lucas Henrique Queiroz doshttp://lattes.cnpq.br/3305699506400402Fernandes, Heloísa Lajas Sancheshttp://lattes.cnpq.br/2840875338255590Albuquerque, Victor Corcino dehttp://lattes.cnpq.br/9308228732250858Cerqueira, Pedro Henrique da Silva Singue2021-12-09T15:32:52Z2023-12-21T03:08:41Z2021-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://hdl.handle.net/11422/15774enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:08:41Zoai:pantheon.ufrj.br:11422/15774Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:08:41Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
A state-of-the-art of physics-informed neural networks in engineering |
title |
A state-of-the-art of physics-informed neural networks in engineering |
spellingShingle |
A state-of-the-art of physics-informed neural networks in engineering Cerqueira, Pedro Henrique da Silva Singue Aprendizado computacional Redes neurais Modelos não lineares Machine learning Neural networks Nonlinear dynamics CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
A state-of-the-art of physics-informed neural networks in engineering |
title_full |
A state-of-the-art of physics-informed neural networks in engineering |
title_fullStr |
A state-of-the-art of physics-informed neural networks in engineering |
title_full_unstemmed |
A state-of-the-art of physics-informed neural networks in engineering |
title_sort |
A state-of-the-art of physics-informed neural networks in engineering |
author |
Cerqueira, Pedro Henrique da Silva Singue |
author_facet |
Cerqueira, Pedro Henrique da Silva Singue |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Fábio Pereira dos http://lattes.cnpq.br/3266981988847625 http://lattes.cnpq.br/3712793523456001 Reis, Lucas Henrique Queiroz dos http://lattes.cnpq.br/3305699506400402 Fernandes, Heloísa Lajas Sanches http://lattes.cnpq.br/2840875338255590 Albuquerque, Victor Corcino de http://lattes.cnpq.br/9308228732250858 |
dc.contributor.author.fl_str_mv |
Cerqueira, Pedro Henrique da Silva Singue |
dc.subject.por.fl_str_mv |
Aprendizado computacional Redes neurais Modelos não lineares Machine learning Neural networks Nonlinear dynamics CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
topic |
Aprendizado computacional Redes neurais Modelos não lineares Machine learning Neural networks Nonlinear dynamics CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Machine learning techniques have gained space in the industrial scenario as a tool to convert the increasing flux of information (data) in process improvement. Among these techniques, neural networks has got much attention due to their universal approximators capacity, of which performance can be improved by providing previous physical knowledge: one has, therefore, the development of the so called Physicsinformed neural networks (PINN). In such context and having noticed a “gap” in the works related on this topics and in the diffusion of this theme in the School of Chemistry, this work proposes a state-of-the-art of the mentioned technique. Particular interesting concerning PINN in fluid mechanics and heat transfer has been noticed. Moreover, PINN have been pointed as important tools for solving forward and inverse problems. Finally, through practical examples, this work has shown the use of neural networks for solving one particular example in chemical engineering without informing the physics of the problem (obtaining the friction factor) and using the differential equation that describes it (solving the 1D heat diffusion equation). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-09T15:32:52Z 2021-08-11 2023-12-21T03:08:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/15774 |
url |
http://hdl.handle.net/11422/15774 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Escola de Química UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Escola de Química UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815456024961744896 |