A state-of-the-art of physics-informed neural networks in engineering

Detalhes bibliográficos
Autor(a) principal: Cerqueira, Pedro Henrique da Silva Singue
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/15774
Resumo: Machine learning techniques have gained space in the industrial scenario as a tool to convert the increasing flux of information (data) in process improvement. Among these techniques, neural networks has got much attention due to their universal approximators capacity, of which performance can be improved by providing previous physical knowledge: one has, therefore, the development of the so called Physicsinformed neural networks (PINN). In such context and having noticed a “gap” in the works related on this topics and in the diffusion of this theme in the School of Chemistry, this work proposes a state-of-the-art of the mentioned technique. Particular interesting concerning PINN in fluid mechanics and heat transfer has been noticed. Moreover, PINN have been pointed as important tools for solving forward and inverse problems. Finally, through practical examples, this work has shown the use of neural networks for solving one particular example in chemical engineering without informing the physics of the problem (obtaining the friction factor) and using the differential equation that describes it (solving the 1D heat diffusion equation).
id UFRJ_b64145e52470eda4b01c0b4aa39caffc
oai_identifier_str oai:pantheon.ufrj.br:11422/15774
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling A state-of-the-art of physics-informed neural networks in engineeringAprendizado computacionalRedes neuraisModelos não linearesMachine learningNeural networksNonlinear dynamicsCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAMachine learning techniques have gained space in the industrial scenario as a tool to convert the increasing flux of information (data) in process improvement. Among these techniques, neural networks has got much attention due to their universal approximators capacity, of which performance can be improved by providing previous physical knowledge: one has, therefore, the development of the so called Physicsinformed neural networks (PINN). In such context and having noticed a “gap” in the works related on this topics and in the diffusion of this theme in the School of Chemistry, this work proposes a state-of-the-art of the mentioned technique. Particular interesting concerning PINN in fluid mechanics and heat transfer has been noticed. Moreover, PINN have been pointed as important tools for solving forward and inverse problems. Finally, through practical examples, this work has shown the use of neural networks for solving one particular example in chemical engineering without informing the physics of the problem (obtaining the friction factor) and using the differential equation that describes it (solving the 1D heat diffusion equation).Técnicas de machine learning vêm ganhando cada vez mais espaço no cenário industrial no intuito de converter o crescente fluxo de informação (data) em melhorias de processos. Entre tais técnicas, as redes neuronais se destacam devido à sua capacidade de aproximador universal de funções, cuja performance pode ser enriquecida ao se fornecer conhecimentos físicos prévios: tem-se, então, o desenvolvimento das Physics-informed neural networks (PINN). Nesse contexto e observando-se um “gap” na produção de trabalhos relacionados ao tema e da difusão dessa temática na grade de formação dos cursos da Escola de Química, esse trabalho se propõe a realizar um estado da arte da técnica mencionada. Observou-se interesse particular das PINN para aplicações em mecânica dos fluidos e transferência de calor. Ademais, as PINN se mostram ferramentas importantes tanto para a resolução de problemas ditos “diretos” quanto “indiretos”. Por fim, através de exemplos práticos, constatou-se a capacidade de se aproximar funções de interesse particular na indústria química usando-se redes neurais sem nenhuma informação física do problema (obtenção do fator de atrito) e utilizando-se a equação diferencial que descreve o problema (resolução da equação de difusão em 1D).Universidade Federal do Rio de JaneiroBrasilEscola de QuímicaUFRJSantos, Fábio Pereira doshttp://lattes.cnpq.br/3266981988847625http://lattes.cnpq.br/3712793523456001Reis, Lucas Henrique Queiroz doshttp://lattes.cnpq.br/3305699506400402Fernandes, Heloísa Lajas Sancheshttp://lattes.cnpq.br/2840875338255590Albuquerque, Victor Corcino dehttp://lattes.cnpq.br/9308228732250858Cerqueira, Pedro Henrique da Silva Singue2021-12-09T15:32:52Z2023-12-21T03:08:41Z2021-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesishttp://hdl.handle.net/11422/15774enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:08:41Zoai:pantheon.ufrj.br:11422/15774Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:08:41Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv A state-of-the-art of physics-informed neural networks in engineering
title A state-of-the-art of physics-informed neural networks in engineering
spellingShingle A state-of-the-art of physics-informed neural networks in engineering
Cerqueira, Pedro Henrique da Silva Singue
Aprendizado computacional
Redes neurais
Modelos não lineares
Machine learning
Neural networks
Nonlinear dynamics
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short A state-of-the-art of physics-informed neural networks in engineering
title_full A state-of-the-art of physics-informed neural networks in engineering
title_fullStr A state-of-the-art of physics-informed neural networks in engineering
title_full_unstemmed A state-of-the-art of physics-informed neural networks in engineering
title_sort A state-of-the-art of physics-informed neural networks in engineering
author Cerqueira, Pedro Henrique da Silva Singue
author_facet Cerqueira, Pedro Henrique da Silva Singue
author_role author
dc.contributor.none.fl_str_mv Santos, Fábio Pereira dos
http://lattes.cnpq.br/3266981988847625
http://lattes.cnpq.br/3712793523456001
Reis, Lucas Henrique Queiroz dos
http://lattes.cnpq.br/3305699506400402
Fernandes, Heloísa Lajas Sanches
http://lattes.cnpq.br/2840875338255590
Albuquerque, Victor Corcino de
http://lattes.cnpq.br/9308228732250858
dc.contributor.author.fl_str_mv Cerqueira, Pedro Henrique da Silva Singue
dc.subject.por.fl_str_mv Aprendizado computacional
Redes neurais
Modelos não lineares
Machine learning
Neural networks
Nonlinear dynamics
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Aprendizado computacional
Redes neurais
Modelos não lineares
Machine learning
Neural networks
Nonlinear dynamics
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Machine learning techniques have gained space in the industrial scenario as a tool to convert the increasing flux of information (data) in process improvement. Among these techniques, neural networks has got much attention due to their universal approximators capacity, of which performance can be improved by providing previous physical knowledge: one has, therefore, the development of the so called Physicsinformed neural networks (PINN). In such context and having noticed a “gap” in the works related on this topics and in the diffusion of this theme in the School of Chemistry, this work proposes a state-of-the-art of the mentioned technique. Particular interesting concerning PINN in fluid mechanics and heat transfer has been noticed. Moreover, PINN have been pointed as important tools for solving forward and inverse problems. Finally, through practical examples, this work has shown the use of neural networks for solving one particular example in chemical engineering without informing the physics of the problem (obtaining the friction factor) and using the differential equation that describes it (solving the 1D heat diffusion equation).
publishDate 2021
dc.date.none.fl_str_mv 2021-12-09T15:32:52Z
2021-08-11
2023-12-21T03:08:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/15774
url http://hdl.handle.net/11422/15774
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Escola de Química
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Escola de Química
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815456024961744896