Development of an aggregation kernel for the electrocoalescence process

Detalhes bibliográficos
Autor(a) principal: Khajehesamedini, Ali
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/13614
Resumo: Water is normally coproduced along with oil in petroleum reservoirs. During the production of crude oil, the mixture is subjected to intense turbulence, providing sufficient dispersion for the formation of water-in-oil (W/O) emulsions. The presence of W/O emulsion causes practical problems in the industrial equipment. Electrocoalescence is accepted as the principal industrial process to break the W/O emulsions and separate the aqueous and oil phases. The application of a high electric field to the W/O emulsions polarizes the water droplets and enhances the rate of their coalescence. In order to improve the understanding of desalting/dehydration processes and to select the best operational parameters and control strategies of the process, attempts have been made to model this process. In this work, the coupling of computational fluid dynamics (CFD) and population balance equation (PBE) is used as the principal idea to conduct the modeling. Moreover, a new concept named “free phase” is introduced to model the creation of segregated water phase (capture). In the first stage of the study, a mathematical model based on population, mass and momentum balance equations for disperse, oil and free phase is developed to interpret the batch electrocoalescence process. The parameters of the aggregation and capture kernels are estimated using the experimental data. In the second stage of the study, the continuous electrocoalescence pilot plant is simulated by implementing the derived kernels in the Ansys Fluent (R) software. The results show a decent performance of the models in predicting the separation of the phases inside the batch and continuous electrostatic vessels.
id UFRJ_b7bd435b011f9c7593a44805b99a2271
oai_identifier_str oai:pantheon.ufrj.br:11422/13614
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Development of an aggregation kernel for the electrocoalescence processDesenvolvimento de um kernel de agregação para o processo de electrocoalescênciaFluidodinâmica computacionalEquação do balanço populacionalCoalescênciaCapturaEmulsão de A/OCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAWater is normally coproduced along with oil in petroleum reservoirs. During the production of crude oil, the mixture is subjected to intense turbulence, providing sufficient dispersion for the formation of water-in-oil (W/O) emulsions. The presence of W/O emulsion causes practical problems in the industrial equipment. Electrocoalescence is accepted as the principal industrial process to break the W/O emulsions and separate the aqueous and oil phases. The application of a high electric field to the W/O emulsions polarizes the water droplets and enhances the rate of their coalescence. In order to improve the understanding of desalting/dehydration processes and to select the best operational parameters and control strategies of the process, attempts have been made to model this process. In this work, the coupling of computational fluid dynamics (CFD) and population balance equation (PBE) is used as the principal idea to conduct the modeling. Moreover, a new concept named “free phase” is introduced to model the creation of segregated water phase (capture). In the first stage of the study, a mathematical model based on population, mass and momentum balance equations for disperse, oil and free phase is developed to interpret the batch electrocoalescence process. The parameters of the aggregation and capture kernels are estimated using the experimental data. In the second stage of the study, the continuous electrocoalescence pilot plant is simulated by implementing the derived kernels in the Ansys Fluent (R) software. The results show a decent performance of the models in predicting the separation of the phases inside the batch and continuous electrostatic vessels.A água é normalmente coproduzida juntamente com o óleo em reservatórios de petróleo. Durante a produção de petróleo bruto, a mistura é submetida a intensa turbulência, proporcionando dispersão suficiente para a formação de emulsões águaem-óleo (A/O). A presença de emulsão A/O causa problemas práticos nos equipamentos industrial. A eletrocoalescência é aceita como o principal processo industrial para quebrar as emulsões A/O e separar as fases aquosa e oleosa. A aplicação de um campo elétrico alto às emulsões A/O polariza as gotas de água e aumenta a taxa da coalescência. A fim de melhorar o entendimento sobre os processos de dessalinização/ desidratação e selecionar os melhores parâmetros operacionais e estratégias de controle do processo, foram feitas tentativas para modelar este processo. Neste trabalho, o acoplamento de fluidinâmica computacional (CFD) e equação de balanço populacional (PBE) é usado como a ideia principal para conduzir a modelagem. Além disso, um novo conceito chamado “fase livre” é introduzido para modelar a criação da fase de água segregada (captura). Na primeira etapa do estudo, um modelo matemático baseado nas equações de balanço de massa, momento e populacional para as fases dispersa, oleosa e livre é desenvolvido para interpretar o processo de eletrococalcinação em batelada. Os parâmetros dos núcleos de agregação e captura são estimados usando os dados experimentais. Na segunda etapa do estudo, a planta piloto de eletrocoescência contínua é simulada pela implementação dos núcleos derivados no software Ansys Fluent (R). Os resultados mostram um desempenho bom dos modelos em predizer a separação das fases dentro dos vasos electrostáticos descontínuos e contínuos.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia QuímicaUFRJPinto, José Carlos Costa da Silvahttp://lattes.cnpq.br/6479420970768737Tavares, Frederico Wanderleyhttp://lattes.cnpq.br/7493008178841307Souza, Marcio Nele dehttp://lattes.cnpq.br/2742026944490151Secchi, Argimiro ResendeNdiaye, Papa MatarSantos, Fabio Pereira dosFonseca, ElizabethLima, Eduardo Rocha de AlmeidaKhajehesamedini, Ali2021-02-04T22:34:23Z2023-12-21T03:07:24Z2019-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://hdl.handle.net/11422/13614enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:07:24Zoai:pantheon.ufrj.br:11422/13614Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:07:24Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Development of an aggregation kernel for the electrocoalescence process
Desenvolvimento de um kernel de agregação para o processo de electrocoalescência
title Development of an aggregation kernel for the electrocoalescence process
spellingShingle Development of an aggregation kernel for the electrocoalescence process
Khajehesamedini, Ali
Fluidodinâmica computacional
Equação do balanço populacional
Coalescência
Captura
Emulsão de A/O
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Development of an aggregation kernel for the electrocoalescence process
title_full Development of an aggregation kernel for the electrocoalescence process
title_fullStr Development of an aggregation kernel for the electrocoalescence process
title_full_unstemmed Development of an aggregation kernel for the electrocoalescence process
title_sort Development of an aggregation kernel for the electrocoalescence process
author Khajehesamedini, Ali
author_facet Khajehesamedini, Ali
author_role author
dc.contributor.none.fl_str_mv Pinto, José Carlos Costa da Silva
http://lattes.cnpq.br/6479420970768737
Tavares, Frederico Wanderley
http://lattes.cnpq.br/7493008178841307
Souza, Marcio Nele de
http://lattes.cnpq.br/2742026944490151
Secchi, Argimiro Resende
Ndiaye, Papa Matar
Santos, Fabio Pereira dos
Fonseca, Elizabeth
Lima, Eduardo Rocha de Almeida
dc.contributor.author.fl_str_mv Khajehesamedini, Ali
dc.subject.por.fl_str_mv Fluidodinâmica computacional
Equação do balanço populacional
Coalescência
Captura
Emulsão de A/O
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Fluidodinâmica computacional
Equação do balanço populacional
Coalescência
Captura
Emulsão de A/O
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Water is normally coproduced along with oil in petroleum reservoirs. During the production of crude oil, the mixture is subjected to intense turbulence, providing sufficient dispersion for the formation of water-in-oil (W/O) emulsions. The presence of W/O emulsion causes practical problems in the industrial equipment. Electrocoalescence is accepted as the principal industrial process to break the W/O emulsions and separate the aqueous and oil phases. The application of a high electric field to the W/O emulsions polarizes the water droplets and enhances the rate of their coalescence. In order to improve the understanding of desalting/dehydration processes and to select the best operational parameters and control strategies of the process, attempts have been made to model this process. In this work, the coupling of computational fluid dynamics (CFD) and population balance equation (PBE) is used as the principal idea to conduct the modeling. Moreover, a new concept named “free phase” is introduced to model the creation of segregated water phase (capture). In the first stage of the study, a mathematical model based on population, mass and momentum balance equations for disperse, oil and free phase is developed to interpret the batch electrocoalescence process. The parameters of the aggregation and capture kernels are estimated using the experimental data. In the second stage of the study, the continuous electrocoalescence pilot plant is simulated by implementing the derived kernels in the Ansys Fluent (R) software. The results show a decent performance of the models in predicting the separation of the phases inside the batch and continuous electrostatic vessels.
publishDate 2019
dc.date.none.fl_str_mv 2019-08
2021-02-04T22:34:23Z
2023-12-21T03:07:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/13614
url http://hdl.handle.net/11422/13614
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Química
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia Química
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815456013249150976