Development of an aggregation kernel for the electrocoalescence process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRJ |
Texto Completo: | http://hdl.handle.net/11422/13614 |
Resumo: | Water is normally coproduced along with oil in petroleum reservoirs. During the production of crude oil, the mixture is subjected to intense turbulence, providing sufficient dispersion for the formation of water-in-oil (W/O) emulsions. The presence of W/O emulsion causes practical problems in the industrial equipment. Electrocoalescence is accepted as the principal industrial process to break the W/O emulsions and separate the aqueous and oil phases. The application of a high electric field to the W/O emulsions polarizes the water droplets and enhances the rate of their coalescence. In order to improve the understanding of desalting/dehydration processes and to select the best operational parameters and control strategies of the process, attempts have been made to model this process. In this work, the coupling of computational fluid dynamics (CFD) and population balance equation (PBE) is used as the principal idea to conduct the modeling. Moreover, a new concept named “free phase” is introduced to model the creation of segregated water phase (capture). In the first stage of the study, a mathematical model based on population, mass and momentum balance equations for disperse, oil and free phase is developed to interpret the batch electrocoalescence process. The parameters of the aggregation and capture kernels are estimated using the experimental data. In the second stage of the study, the continuous electrocoalescence pilot plant is simulated by implementing the derived kernels in the Ansys Fluent (R) software. The results show a decent performance of the models in predicting the separation of the phases inside the batch and continuous electrostatic vessels. |
id |
UFRJ_b7bd435b011f9c7593a44805b99a2271 |
---|---|
oai_identifier_str |
oai:pantheon.ufrj.br:11422/13614 |
network_acronym_str |
UFRJ |
network_name_str |
Repositório Institucional da UFRJ |
repository_id_str |
|
spelling |
Development of an aggregation kernel for the electrocoalescence processDesenvolvimento de um kernel de agregação para o processo de electrocoalescênciaFluidodinâmica computacionalEquação do balanço populacionalCoalescênciaCapturaEmulsão de A/OCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAWater is normally coproduced along with oil in petroleum reservoirs. During the production of crude oil, the mixture is subjected to intense turbulence, providing sufficient dispersion for the formation of water-in-oil (W/O) emulsions. The presence of W/O emulsion causes practical problems in the industrial equipment. Electrocoalescence is accepted as the principal industrial process to break the W/O emulsions and separate the aqueous and oil phases. The application of a high electric field to the W/O emulsions polarizes the water droplets and enhances the rate of their coalescence. In order to improve the understanding of desalting/dehydration processes and to select the best operational parameters and control strategies of the process, attempts have been made to model this process. In this work, the coupling of computational fluid dynamics (CFD) and population balance equation (PBE) is used as the principal idea to conduct the modeling. Moreover, a new concept named “free phase” is introduced to model the creation of segregated water phase (capture). In the first stage of the study, a mathematical model based on population, mass and momentum balance equations for disperse, oil and free phase is developed to interpret the batch electrocoalescence process. The parameters of the aggregation and capture kernels are estimated using the experimental data. In the second stage of the study, the continuous electrocoalescence pilot plant is simulated by implementing the derived kernels in the Ansys Fluent (R) software. The results show a decent performance of the models in predicting the separation of the phases inside the batch and continuous electrostatic vessels.A água é normalmente coproduzida juntamente com o óleo em reservatórios de petróleo. Durante a produção de petróleo bruto, a mistura é submetida a intensa turbulência, proporcionando dispersão suficiente para a formação de emulsões águaem-óleo (A/O). A presença de emulsão A/O causa problemas práticos nos equipamentos industrial. A eletrocoalescência é aceita como o principal processo industrial para quebrar as emulsões A/O e separar as fases aquosa e oleosa. A aplicação de um campo elétrico alto às emulsões A/O polariza as gotas de água e aumenta a taxa da coalescência. A fim de melhorar o entendimento sobre os processos de dessalinização/ desidratação e selecionar os melhores parâmetros operacionais e estratégias de controle do processo, foram feitas tentativas para modelar este processo. Neste trabalho, o acoplamento de fluidinâmica computacional (CFD) e equação de balanço populacional (PBE) é usado como a ideia principal para conduzir a modelagem. Além disso, um novo conceito chamado “fase livre” é introduzido para modelar a criação da fase de água segregada (captura). Na primeira etapa do estudo, um modelo matemático baseado nas equações de balanço de massa, momento e populacional para as fases dispersa, oleosa e livre é desenvolvido para interpretar o processo de eletrococalcinação em batelada. Os parâmetros dos núcleos de agregação e captura são estimados usando os dados experimentais. Na segunda etapa do estudo, a planta piloto de eletrocoescência contínua é simulada pela implementação dos núcleos derivados no software Ansys Fluent (R). Os resultados mostram um desempenho bom dos modelos em predizer a separação das fases dentro dos vasos electrostáticos descontínuos e contínuos.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia QuímicaUFRJPinto, José Carlos Costa da Silvahttp://lattes.cnpq.br/6479420970768737Tavares, Frederico Wanderleyhttp://lattes.cnpq.br/7493008178841307Souza, Marcio Nele dehttp://lattes.cnpq.br/2742026944490151Secchi, Argimiro ResendeNdiaye, Papa MatarSantos, Fabio Pereira dosFonseca, ElizabethLima, Eduardo Rocha de AlmeidaKhajehesamedini, Ali2021-02-04T22:34:23Z2023-12-21T03:07:24Z2019-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://hdl.handle.net/11422/13614enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:07:24Zoai:pantheon.ufrj.br:11422/13614Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:07:24Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
dc.title.none.fl_str_mv |
Development of an aggregation kernel for the electrocoalescence process Desenvolvimento de um kernel de agregação para o processo de electrocoalescência |
title |
Development of an aggregation kernel for the electrocoalescence process |
spellingShingle |
Development of an aggregation kernel for the electrocoalescence process Khajehesamedini, Ali Fluidodinâmica computacional Equação do balanço populacional Coalescência Captura Emulsão de A/O CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Development of an aggregation kernel for the electrocoalescence process |
title_full |
Development of an aggregation kernel for the electrocoalescence process |
title_fullStr |
Development of an aggregation kernel for the electrocoalescence process |
title_full_unstemmed |
Development of an aggregation kernel for the electrocoalescence process |
title_sort |
Development of an aggregation kernel for the electrocoalescence process |
author |
Khajehesamedini, Ali |
author_facet |
Khajehesamedini, Ali |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinto, José Carlos Costa da Silva http://lattes.cnpq.br/6479420970768737 Tavares, Frederico Wanderley http://lattes.cnpq.br/7493008178841307 Souza, Marcio Nele de http://lattes.cnpq.br/2742026944490151 Secchi, Argimiro Resende Ndiaye, Papa Matar Santos, Fabio Pereira dos Fonseca, Elizabeth Lima, Eduardo Rocha de Almeida |
dc.contributor.author.fl_str_mv |
Khajehesamedini, Ali |
dc.subject.por.fl_str_mv |
Fluidodinâmica computacional Equação do balanço populacional Coalescência Captura Emulsão de A/O CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
topic |
Fluidodinâmica computacional Equação do balanço populacional Coalescência Captura Emulsão de A/O CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Water is normally coproduced along with oil in petroleum reservoirs. During the production of crude oil, the mixture is subjected to intense turbulence, providing sufficient dispersion for the formation of water-in-oil (W/O) emulsions. The presence of W/O emulsion causes practical problems in the industrial equipment. Electrocoalescence is accepted as the principal industrial process to break the W/O emulsions and separate the aqueous and oil phases. The application of a high electric field to the W/O emulsions polarizes the water droplets and enhances the rate of their coalescence. In order to improve the understanding of desalting/dehydration processes and to select the best operational parameters and control strategies of the process, attempts have been made to model this process. In this work, the coupling of computational fluid dynamics (CFD) and population balance equation (PBE) is used as the principal idea to conduct the modeling. Moreover, a new concept named “free phase” is introduced to model the creation of segregated water phase (capture). In the first stage of the study, a mathematical model based on population, mass and momentum balance equations for disperse, oil and free phase is developed to interpret the batch electrocoalescence process. The parameters of the aggregation and capture kernels are estimated using the experimental data. In the second stage of the study, the continuous electrocoalescence pilot plant is simulated by implementing the derived kernels in the Ansys Fluent (R) software. The results show a decent performance of the models in predicting the separation of the phases inside the batch and continuous electrostatic vessels. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 2021-02-04T22:34:23Z 2023-12-21T03:07:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/13614 |
url |
http://hdl.handle.net/11422/13614 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Química UFRJ |
publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia Química UFRJ |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
instacron_str |
UFRJ |
institution |
UFRJ |
reponame_str |
Repositório Institucional da UFRJ |
collection |
Repositório Institucional da UFRJ |
repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
_version_ |
1815456013249150976 |