A demand-aware heuristic for value-space partitioning and repartitioning

Detalhes bibliográficos
Autor(a) principal: Cabral, Wladimir Livolis de Alcantara
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/14070
Resumo: In this work, we present a novel heuristic for partitioning a NoSQL key-value store based on its value-space. Our demand-aware heuristic takes into account the updates and search queries’ distribution in order to partition the value-space into mutually exclusive and exhaustive regions that are fairly contacted by these operations (updates and searches). The operations’ distributions might change with time and thus we make use of a sliding window based variation of the GreenwaldKhanna algorithm - a well-known data stream algorithm - in order to always have a summary available for finding quantile points (the value-space is partitioned at these points) and then to perform repartitioning so that regions are still fairly contacted. We also executed experiments varying the fraction of searches and updates, as well as their distributions, in order to evaluate the performance of our heuristic and compare it with other solutions. The results show that, as the fraction of searches and updates varies, as well as their distributions, regions are still contacted fairly and do not impose a higher number of messages to be sent to the machines associated to these regions.
id UFRJ_b8599ba4d0c1cdce5fe1ba20a2a597d3
oai_identifier_str oai:pantheon.ufrj.br:11422/14070
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling A demand-aware heuristic for value-space partitioning and repartitioningUma heurística para particionamento e reparticionamento de um espaço de valoresKey-Value storeValue-space partitioningHorizontal scalabilityCNPQ::ENGENHARIASIn this work, we present a novel heuristic for partitioning a NoSQL key-value store based on its value-space. Our demand-aware heuristic takes into account the updates and search queries’ distribution in order to partition the value-space into mutually exclusive and exhaustive regions that are fairly contacted by these operations (updates and searches). The operations’ distributions might change with time and thus we make use of a sliding window based variation of the GreenwaldKhanna algorithm - a well-known data stream algorithm - in order to always have a summary available for finding quantile points (the value-space is partitioned at these points) and then to perform repartitioning so that regions are still fairly contacted. We also executed experiments varying the fraction of searches and updates, as well as their distributions, in order to evaluate the performance of our heuristic and compare it with other solutions. The results show that, as the fraction of searches and updates varies, as well as their distributions, regions are still contacted fairly and do not impose a higher number of messages to be sent to the machines associated to these regions.Neste trabalho, apresentamos uma nova heurística para particionamento de um banco de dados NoSQL de chave-valor baseado em seu espaço de valores. Nossa heurística leva em consideração a distribuição de operações de busca e atualização no intuito de particionar o espaço de valores em regiões mutuamente exclusivas e exaustivas que são contatadas de maneira justa por tais operações. A distribuição de cada uma dessas operações pode mudar com o tempo e, por isso, fazemos uso de uma versão do algoritmo de Greenwald-Khanna (um algoritmo de data stream bem conhecido), baseado em janelas deslizantes, no intuito de sempre ter disponível um resumo para encontrar quantis (que são os pontos onde o espaço de valores é particionado) e, então, realizar reparticionamentos de modo que as regiões ainda sejam contatadas de maneira justa. Nós realizamos experimentos variando a fração de buscas e atualizações, bem como suas distribuições, com o objetivo de avaliar o desempenho de nossa heurística e também compará-la com outras soluções. Os resultados mostram que, conforme a fração de buscas e atualizações muda, bem como suas distribuições, as regiões ainda são contatadas de maneira justa, além de não impor um número demasiado de mensagens a serem enviadas para as máquinas associadas a essas regiões.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia de Sistemas e ComputaçãoUFRJRezende, José Ferreira dehttp://lattes.cnpq.br/8588117212005149http://lattes.cnpq.br/5969205256519293Rocha, Antônio Augusto de Aragãohttp://lattes.cnpq.br/5784860269030800Leão, Rosa Maria MeriOliveira, Daniel Cardoso Moraes deCabral, Wladimir Livolis de Alcantara2021-04-05T02:44:57Z2023-12-21T03:07:36Z2019-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/14070enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:07:36Zoai:pantheon.ufrj.br:11422/14070Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:07:36Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv A demand-aware heuristic for value-space partitioning and repartitioning
Uma heurística para particionamento e reparticionamento de um espaço de valores
title A demand-aware heuristic for value-space partitioning and repartitioning
spellingShingle A demand-aware heuristic for value-space partitioning and repartitioning
Cabral, Wladimir Livolis de Alcantara
Key-Value store
Value-space partitioning
Horizontal scalability
CNPQ::ENGENHARIAS
title_short A demand-aware heuristic for value-space partitioning and repartitioning
title_full A demand-aware heuristic for value-space partitioning and repartitioning
title_fullStr A demand-aware heuristic for value-space partitioning and repartitioning
title_full_unstemmed A demand-aware heuristic for value-space partitioning and repartitioning
title_sort A demand-aware heuristic for value-space partitioning and repartitioning
author Cabral, Wladimir Livolis de Alcantara
author_facet Cabral, Wladimir Livolis de Alcantara
author_role author
dc.contributor.none.fl_str_mv Rezende, José Ferreira de
http://lattes.cnpq.br/8588117212005149
http://lattes.cnpq.br/5969205256519293
Rocha, Antônio Augusto de Aragão
http://lattes.cnpq.br/5784860269030800
Leão, Rosa Maria Meri
Oliveira, Daniel Cardoso Moraes de
dc.contributor.author.fl_str_mv Cabral, Wladimir Livolis de Alcantara
dc.subject.por.fl_str_mv Key-Value store
Value-space partitioning
Horizontal scalability
CNPQ::ENGENHARIAS
topic Key-Value store
Value-space partitioning
Horizontal scalability
CNPQ::ENGENHARIAS
description In this work, we present a novel heuristic for partitioning a NoSQL key-value store based on its value-space. Our demand-aware heuristic takes into account the updates and search queries’ distribution in order to partition the value-space into mutually exclusive and exhaustive regions that are fairly contacted by these operations (updates and searches). The operations’ distributions might change with time and thus we make use of a sliding window based variation of the GreenwaldKhanna algorithm - a well-known data stream algorithm - in order to always have a summary available for finding quantile points (the value-space is partitioned at these points) and then to perform repartitioning so that regions are still fairly contacted. We also executed experiments varying the fraction of searches and updates, as well as their distributions, in order to evaluate the performance of our heuristic and compare it with other solutions. The results show that, as the fraction of searches and updates varies, as well as their distributions, regions are still contacted fairly and do not impose a higher number of messages to be sent to the machines associated to these regions.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
2021-04-05T02:44:57Z
2023-12-21T03:07:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/14070
url http://hdl.handle.net/11422/14070
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815456014317649920