Majority vote community detection with dynamic threshold and bootstrapped rounds

Detalhes bibliográficos
Autor(a) principal: Sales, Guilherme da Costa
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/14067
Resumo: Community detection is a fundamental problem in network science, where the vertices of a given network are to be partitioned such that vertices in the same group are structurally related. This problem finds applications in a wide range of areas and has attracted much attention towards both its theoretical and practical aspects. Label propagation algorithms are based on a procedure that iteratively updates the classification of each node by a majority vote of its neighbors’ community labels. These algorithms are known to be simple and fast, and are widely used in practical applications. In this dissertation, we study variations of a label propagation algorithm applied to the problem of recovering two communities embedded in a network (majority vote algorithm, or MVA), and propose the following new contributions: (i) a dynamic threshold that generalizes the fixed threshold used by the majority vote algorithm, (ii) a stopping criterion that solves the oscillation problem displayed by the solutions produced by label propagation, and (iii) bootstrapping strategies that re-utilize solutions to achieve better results. These modifications give rise to new label propagation algorithms which we call Global Average Majority (GAM) and Global Average Majority with Bootstrapping (GAMB). Finally, the behavior and performance of the new algorithms are evaluated by numerical experiments with synthetic networks generated by the stochastic block model (SBM) and real world networks with known communities.
id UFRJ_c49a3400c4ba44bf53084bb9de236853
oai_identifier_str oai:pantheon.ufrj.br:11422/14067
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Majority vote community detection with dynamic threshold and bootstrapped roundsDetecção de comunidades através do voto da maioria com limiar dinâmico e rodadas bootstrapCommunity detectionStochastic block modelMajority voteLabel propagationCNPQ::ENGENHARIASCommunity detection is a fundamental problem in network science, where the vertices of a given network are to be partitioned such that vertices in the same group are structurally related. This problem finds applications in a wide range of areas and has attracted much attention towards both its theoretical and practical aspects. Label propagation algorithms are based on a procedure that iteratively updates the classification of each node by a majority vote of its neighbors’ community labels. These algorithms are known to be simple and fast, and are widely used in practical applications. In this dissertation, we study variations of a label propagation algorithm applied to the problem of recovering two communities embedded in a network (majority vote algorithm, or MVA), and propose the following new contributions: (i) a dynamic threshold that generalizes the fixed threshold used by the majority vote algorithm, (ii) a stopping criterion that solves the oscillation problem displayed by the solutions produced by label propagation, and (iii) bootstrapping strategies that re-utilize solutions to achieve better results. These modifications give rise to new label propagation algorithms which we call Global Average Majority (GAM) and Global Average Majority with Bootstrapping (GAMB). Finally, the behavior and performance of the new algorithms are evaluated by numerical experiments with synthetic networks generated by the stochastic block model (SBM) and real world networks with known communities.Detec¸c˜ao de comunidades ´e um problema fundamental em Ciˆencia de Redes, onde os v´ertices de uma dada rede devem ser particionados de maneira que v´ertices num mesmo grupo sejam estruturalmente relacionados. Este problema encontra aplica¸c˜oes em diversas ´areas e tem atra´ıdo muita aten¸c˜ao a seus aspectos pr´aticos e te´oricos. Algoritmos de propaga¸c˜ao de r´otulos (label propagation algorithms) se baseiam num procedimento que iterativamente atualiza a classifica¸c˜ao de cada n´o atrav´es do voto da maioria dos r´otulos de comunidade de seus vizinhos. Estes algoritmos s˜ao conhecidos por serem simples e r´apidos, e s˜ao muito utilizados em aplica¸coes pr´aticas. Nesta disserta¸c˜ao, estudamos varia¸c˜oes de um algoritmo de propaga¸c˜ao de r´otulos aplicado ao problema da recupera¸c˜ao de duas comunidades intr´ınsecas a uma rede (majority vote algorithm, ou MVA), e propomos as seguintes novas contribui¸c˜oes: (i) um limiar dinˆamico que generaliza o limiar fixo utilizado pelo MVA, (ii) um crit´erio de parada que resolve o problema de oscila¸c˜ao das solu¸c˜oes produzidas por algoritmos de propaga¸c˜ao de r´otulos, e (iii) estrat´egias de bootstrapping que reutilizam solu¸c˜oes para alcan¸car melhores resultados. Estas modifica¸c˜oes d˜ao origem a novos algoritmos de propaga¸c˜ao de r´otulos que chamamos Global Average Majority (GAM) e Global Average Majority with Bootstrapping (GAMB). Finalmente, o comportamento e a perfomance dos novos algoritmos s˜ao avaliados atrav´es de experimentos num´ericos com redes sint´eticas geradas pelo stochastic block model (SBM) e redes do mundo real com comunidades conhecidas.Universidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia de Sistemas e ComputaçãoUFRJFigueiredo, Daniel Rattonhttp://lattes.cnpq.br/3621433615334969http://lattes.cnpq.br/7039632984205495Iacobelli, Giuliohttp://lattes.cnpq.br/0549803760523062Barbosa, Valmir CarneiroMenasché, Daniel SadocSales, Guilherme da Costa2021-04-05T02:41:31Z2023-12-21T03:07:36Z2019-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/14067enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:07:36Zoai:pantheon.ufrj.br:11422/14067Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:07:36Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Majority vote community detection with dynamic threshold and bootstrapped rounds
Detecção de comunidades através do voto da maioria com limiar dinâmico e rodadas bootstrap
title Majority vote community detection with dynamic threshold and bootstrapped rounds
spellingShingle Majority vote community detection with dynamic threshold and bootstrapped rounds
Sales, Guilherme da Costa
Community detection
Stochastic block model
Majority vote
Label propagation
CNPQ::ENGENHARIAS
title_short Majority vote community detection with dynamic threshold and bootstrapped rounds
title_full Majority vote community detection with dynamic threshold and bootstrapped rounds
title_fullStr Majority vote community detection with dynamic threshold and bootstrapped rounds
title_full_unstemmed Majority vote community detection with dynamic threshold and bootstrapped rounds
title_sort Majority vote community detection with dynamic threshold and bootstrapped rounds
author Sales, Guilherme da Costa
author_facet Sales, Guilherme da Costa
author_role author
dc.contributor.none.fl_str_mv Figueiredo, Daniel Ratton
http://lattes.cnpq.br/3621433615334969
http://lattes.cnpq.br/7039632984205495
Iacobelli, Giulio
http://lattes.cnpq.br/0549803760523062
Barbosa, Valmir Carneiro
Menasché, Daniel Sadoc
dc.contributor.author.fl_str_mv Sales, Guilherme da Costa
dc.subject.por.fl_str_mv Community detection
Stochastic block model
Majority vote
Label propagation
CNPQ::ENGENHARIAS
topic Community detection
Stochastic block model
Majority vote
Label propagation
CNPQ::ENGENHARIAS
description Community detection is a fundamental problem in network science, where the vertices of a given network are to be partitioned such that vertices in the same group are structurally related. This problem finds applications in a wide range of areas and has attracted much attention towards both its theoretical and practical aspects. Label propagation algorithms are based on a procedure that iteratively updates the classification of each node by a majority vote of its neighbors’ community labels. These algorithms are known to be simple and fast, and are widely used in practical applications. In this dissertation, we study variations of a label propagation algorithm applied to the problem of recovering two communities embedded in a network (majority vote algorithm, or MVA), and propose the following new contributions: (i) a dynamic threshold that generalizes the fixed threshold used by the majority vote algorithm, (ii) a stopping criterion that solves the oscillation problem displayed by the solutions produced by label propagation, and (iii) bootstrapping strategies that re-utilize solutions to achieve better results. These modifications give rise to new label propagation algorithms which we call Global Average Majority (GAM) and Global Average Majority with Bootstrapping (GAMB). Finally, the behavior and performance of the new algorithms are evaluated by numerical experiments with synthetic networks generated by the stochastic block model (SBM) and real world networks with known communities.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
2021-04-05T02:41:31Z
2023-12-21T03:07:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/14067
url http://hdl.handle.net/11422/14067
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
Brasil
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia
Programa de Pós-Graduação em Engenharia de Sistemas e Computação
UFRJ
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815456014309261312