Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients

Detalhes bibliográficos
Autor(a) principal: Cotta, Renato Machado
Data de Publicação: 2016
Outros Autores: Naveira-Cotta, Carolina Palma, Knupp, Diego Campos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/8418
Resumo: A convergence enhancement technique known as the integral balance approach is employed in combination with the Generalized Integral Transform Technique (GITT) for solving diffusion or convection-diffusion problems in physical domains with subregions of markedly different materials properties and/or spatial scales. GITT is employed in the solution of the differential eigenvalue problem with space variable coefficients, by adopting simpler auxiliary eigenproblems for the eigenfunction representation. The examples provided deal with heat conduction in heterogeneous media and forced convection in a microchannel embedded in a substrate. The convergence characteristics of the proposed novel solution are critically compared against the conventional approach through integral transforms without the integral balance enhancement, with the aid of fully converged results from the available exact solutions.
id UFRJ_c91aa1e2b975cd183be6bbee2daab8a4
oai_identifier_str oai:pantheon.ufrj.br:11422/8418
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficientsHeat flowFluid flowGeneralized Integral Transform TechniqueMathematical MethodCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOSA convergence enhancement technique known as the integral balance approach is employed in combination with the Generalized Integral Transform Technique (GITT) for solving diffusion or convection-diffusion problems in physical domains with subregions of markedly different materials properties and/or spatial scales. GITT is employed in the solution of the differential eigenvalue problem with space variable coefficients, by adopting simpler auxiliary eigenproblems for the eigenfunction representation. The examples provided deal with heat conduction in heterogeneous media and forced convection in a microchannel embedded in a substrate. The convergence characteristics of the proposed novel solution are critically compared against the conventional approach through integral transforms without the integral balance enhancement, with the aid of fully converged results from the available exact solutions.Indisponível.Taylor & FrancisBrasilNúcleo Interdisciplinar de Dinâmica dos Fluidos2019-06-11T16:19:03Z2023-12-21T03:06:00Z2016-07-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1040-7782http://hdl.handle.net/11422/841810.1080/10407782.2016.1177342engNumerical Heat Transfer, Part A ApplicationsCotta, Renato MachadoNaveira-Cotta, Carolina PalmaKnupp, Diego Camposinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:06:00Zoai:pantheon.ufrj.br:11422/8418Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:06Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.none.fl_str_mv Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
title Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
spellingShingle Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
Cotta, Renato Machado
Heat flow
Fluid flow
Generalized Integral Transform Technique
Mathematical Method
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
title_short Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
title_full Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
title_fullStr Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
title_full_unstemmed Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
title_sort Enhanced convergence of eigenfunction expansions in convection-diffusion with multiscale space variable coefficients
author Cotta, Renato Machado
author_facet Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
author_role author
author2 Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
author2_role author
author
dc.contributor.author.fl_str_mv Cotta, Renato Machado
Naveira-Cotta, Carolina Palma
Knupp, Diego Campos
dc.subject.por.fl_str_mv Heat flow
Fluid flow
Generalized Integral Transform Technique
Mathematical Method
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
topic Heat flow
Fluid flow
Generalized Integral Transform Technique
Mathematical Method
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA::AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES::DINAMICA DOS FLUIDOS
description A convergence enhancement technique known as the integral balance approach is employed in combination with the Generalized Integral Transform Technique (GITT) for solving diffusion or convection-diffusion problems in physical domains with subregions of markedly different materials properties and/or spatial scales. GITT is employed in the solution of the differential eigenvalue problem with space variable coefficients, by adopting simpler auxiliary eigenproblems for the eigenfunction representation. The examples provided deal with heat conduction in heterogeneous media and forced convection in a microchannel embedded in a substrate. The convergence characteristics of the proposed novel solution are critically compared against the conventional approach through integral transforms without the integral balance enhancement, with the aid of fully converged results from the available exact solutions.
publishDate 2016
dc.date.none.fl_str_mv 2016-07-13
2019-06-11T16:19:03Z
2023-12-21T03:06:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1040-7782
http://hdl.handle.net/11422/8418
10.1080/10407782.2016.1177342
identifier_str_mv 1040-7782
10.1080/10407782.2016.1177342
url http://hdl.handle.net/11422/8418
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Numerical Heat Transfer, Part A Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
publisher.none.fl_str_mv Taylor & Francis
Brasil
Núcleo Interdisciplinar de Dinâmica dos Fluidos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv pantheon@sibi.ufrj.br
_version_ 1815455990756147200