Exploração de arquiteturas de redes neurais em uma série temporal financeira

Detalhes bibliográficos
Autor(a) principal: Anjos, Carlos Eduardo Menezes dos
Data de Publicação: 2018
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFRJ
Texto Completo: http://hdl.handle.net/11422/17253
Resumo: A predição de ações do mercado financeiro é um problema com alto grau de dificuldade devido ao fato da série temporal financeira não ser estacionaria e informações externas, como delações vazadas, a afetarem diretamente. Com o avanço da tecnologia ao longo dos anos, verifica-se possível a criação de modelos mais complexos para modelagem desse tipo de séries temporais, de forma que o trabalho aqui proposto visa explorar diferentes topologias e técnicas de redes neurais artificiais em um série temporal financeira brasileira. Os modelos propostos usam o valor de fechamento, junto com alguns indicadores, de cinco dias seguidos, para tentar predizer se o valor de fechamento subirá ou descerá no sexto dia. Apesar das técnicas de redes neurais serem consideradas o estado da arte para certos problemas, as redes testadas neste trabalho não apresentaram resultados satisfatórios, visto que apenas a informação apresentada aos modelos não foi suficiente para realizar uma modelagem adequada.
id UFRJ_ecb800dfbcf5e1bdc7399b37433000a6
oai_identifier_str oai:pantheon.ufrj.br:11422/17253
network_acronym_str UFRJ
network_name_str Repositório Institucional da UFRJ
repository_id_str
spelling Anjos, Carlos Eduardo Menezes dosSeixas , José Manuel deVargas, Manuel RamonEvsukof, Alexandre Gonçalves2022-06-15T17:30:24Z2023-11-30T03:04:54Z2018-04http://hdl.handle.net/11422/17253Submitted by Luís Vittor Minda Santos (vittorminda.santos@gmail.com) on 2021-06-04T00:42:58Z No. of bitstreams: 1 monopoli10025995.pdf: 658255 bytes, checksum: 2d6c0a41ca708cef12dbc566189555eb (MD5)Approved for entry into archive by Moreno Barros (moreno@ct.ufrj.br) on 2022-06-15T17:30:23Z (GMT) No. of bitstreams: 1 monopoli10025995.pdf: 658255 bytes, checksum: 2d6c0a41ca708cef12dbc566189555eb (MD5)Made available in DSpace on 2022-06-15T17:30:24Z (GMT). No. of bitstreams: 1 monopoli10025995.pdf: 658255 bytes, checksum: 2d6c0a41ca708cef12dbc566189555eb (MD5) Previous issue date: 2018-04A predição de ações do mercado financeiro é um problema com alto grau de dificuldade devido ao fato da série temporal financeira não ser estacionaria e informações externas, como delações vazadas, a afetarem diretamente. Com o avanço da tecnologia ao longo dos anos, verifica-se possível a criação de modelos mais complexos para modelagem desse tipo de séries temporais, de forma que o trabalho aqui proposto visa explorar diferentes topologias e técnicas de redes neurais artificiais em um série temporal financeira brasileira. Os modelos propostos usam o valor de fechamento, junto com alguns indicadores, de cinco dias seguidos, para tentar predizer se o valor de fechamento subirá ou descerá no sexto dia. Apesar das técnicas de redes neurais serem consideradas o estado da arte para certos problemas, as redes testadas neste trabalho não apresentaram resultados satisfatórios, visto que apenas a informação apresentada aos modelos não foi suficiente para realizar uma modelagem adequada.porUniversidade Federal do Rio de JaneiroUFRJBrasilEscola PolitécnicaCNPQ::ENGENHARIASRedes neuraisAprendizado de máquinaMercado financeiroExploração de arquiteturas de redes neurais em uma série temporal financeiraExploration of neural network architectures in a financial time seriesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisabertoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJORIGINALmonopoli10025995.pdfmonopoli10025995.pdfapplication/pdf658255http://pantheon.ufrj.br:80/bitstream/11422/17253/1/monopoli10025995.pdf2d6c0a41ca708cef12dbc566189555ebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81853http://pantheon.ufrj.br:80/bitstream/11422/17253/2/license.txtdd32849f2bfb22da963c3aac6e26e255MD5211422/172532023-11-30 00:04:54.825oai:pantheon.ufrj.br:11422/17253TElDRU7Dh0EgTsODTy1FWENMVVNJVkEgREUgRElTVFJJQlVJw4fDg08KCkFvIGFzc2luYXIgZSBlbnRyZWdhciBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBvKHMpIGF1dG9yKGVzKSBvdSBwcm9wcmlldMOhcmlvKHMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBjb25jZWRlKG0pIGFvIFJlcG9zaXTDs3JpbyBQYW50aGVvbiBkYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gZGUgSmFuZWlybyAoVUZSSikgbyBkaXJlaXRvIG7Do28gLSBleGNsdXNpdm8gZGUgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vKSBlbSB0b2RvIG8gbXVuZG8sIGVtIGZvcm1hdG8gZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8sIG1hcyBuw6NvIGxpbWl0YWRvIGEgw6F1ZGlvIGUvb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZSSiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhZHV6aXIgYSBhcHJlc2VudGHDp8OjbyBkZSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGEgZmluYWxpZGFkZSBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVRlJKIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXNzYSBzdWJtaXNzw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8OjbyBkaWdpdGFsLgoKRGVjbGFyYSBxdWUgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgc2V1IHRyYWJhbGhvIG9yaWdpbmFsLCBlIHF1ZSB2b2PDqiB0ZW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIGEgc3VhIGFwcmVzZW50YcOnw6NvLCBjb20gbyBtZWxob3IgZGUgc2V1cyBjb25oZWNpbWVudG9zLCBuw6NvIGluZnJpbmdpIGRpcmVpdG9zIGF1dG9yYWlzIGRlIHRlcmNlaXJvcy4KClNlIG8gZG9jdW1lbnRvIGVudHJlZ3VlIGNvbnTDqW0gbWF0ZXJpYWwgZG8gcXVhbCB2b2PDqiBuw6NvIHRlbSBkaXJlaXRvcyBkZSBhdXRvciwgZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmNlZGUgYSBVRlJKIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIHN1Ym1pc3PDo28uCgpTZSBvIGRvY3VtZW50byBlbnRyZWd1ZSDDqSBiYXNlYWRvIGVtIHRyYWJhbGhvIHF1ZSBmb2ksIG91IHRlbSBzaWRvIHBhdHJvY2luYWRvIG91IGFwb2lhZG8gcG9yIHVtYSBhZ8OqbmNpYSBvdSBvdXRybyhzKSBvcmdhbmlzbW8ocykgcXVlIG7Do28gYSBVRlJKLCB2b2PDqiBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWxxdWVyIGRpcmVpdG8gZGUgUkVWSVPDg08gb3UgZGUgb3V0cmFzIG9icmlnYcOnw7VlcyByZXF1ZXJpZGFzIHBvciBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUkogaXLDoSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8ocykgc2V1KHMpIG5vbWUocykgY29tbyBhdXRvcihlcykgb3UgcHJvcHJpZXTDoXJpbyhzKSBkYSBzdWJtaXNzw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EsIG5vIGF0byBkZSBzdWJtaXNzw6NvLgo=Repositório de PublicaçõesPUBhttp://www.pantheon.ufrj.br/oai/requestopendoar:2023-11-30T03:04:54Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false
dc.title.pt_BR.fl_str_mv Exploração de arquiteturas de redes neurais em uma série temporal financeira
dc.title.alternative.pt_BR.fl_str_mv Exploration of neural network architectures in a financial time series
title Exploração de arquiteturas de redes neurais em uma série temporal financeira
spellingShingle Exploração de arquiteturas de redes neurais em uma série temporal financeira
Anjos, Carlos Eduardo Menezes dos
CNPQ::ENGENHARIAS
Redes neurais
Aprendizado de máquina
Mercado financeiro
title_short Exploração de arquiteturas de redes neurais em uma série temporal financeira
title_full Exploração de arquiteturas de redes neurais em uma série temporal financeira
title_fullStr Exploração de arquiteturas de redes neurais em uma série temporal financeira
title_full_unstemmed Exploração de arquiteturas de redes neurais em uma série temporal financeira
title_sort Exploração de arquiteturas de redes neurais em uma série temporal financeira
author Anjos, Carlos Eduardo Menezes dos
author_facet Anjos, Carlos Eduardo Menezes dos
author_role author
dc.contributor.author.fl_str_mv Anjos, Carlos Eduardo Menezes dos
dc.contributor.referee1.fl_str_mv Seixas , José Manuel de
dc.contributor.referee2.fl_str_mv Vargas, Manuel Ramon
dc.contributor.advisor1.fl_str_mv Evsukof, Alexandre Gonçalves
contributor_str_mv Seixas , José Manuel de
Vargas, Manuel Ramon
Evsukof, Alexandre Gonçalves
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
topic CNPQ::ENGENHARIAS
Redes neurais
Aprendizado de máquina
Mercado financeiro
dc.subject.por.fl_str_mv Redes neurais
Aprendizado de máquina
Mercado financeiro
description A predição de ações do mercado financeiro é um problema com alto grau de dificuldade devido ao fato da série temporal financeira não ser estacionaria e informações externas, como delações vazadas, a afetarem diretamente. Com o avanço da tecnologia ao longo dos anos, verifica-se possível a criação de modelos mais complexos para modelagem desse tipo de séries temporais, de forma que o trabalho aqui proposto visa explorar diferentes topologias e técnicas de redes neurais artificiais em um série temporal financeira brasileira. Os modelos propostos usam o valor de fechamento, junto com alguns indicadores, de cinco dias seguidos, para tentar predizer se o valor de fechamento subirá ou descerá no sexto dia. Apesar das técnicas de redes neurais serem consideradas o estado da arte para certos problemas, as redes testadas neste trabalho não apresentaram resultados satisfatórios, visto que apenas a informação apresentada aos modelos não foi suficiente para realizar uma modelagem adequada.
publishDate 2018
dc.date.issued.fl_str_mv 2018-04
dc.date.accessioned.fl_str_mv 2022-06-15T17:30:24Z
dc.date.available.fl_str_mv 2023-11-30T03:04:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11422/17253
url http://hdl.handle.net/11422/17253
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.publisher.initials.fl_str_mv UFRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade Federal do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRJ
instname:Universidade Federal do Rio de Janeiro (UFRJ)
instacron:UFRJ
instname_str Universidade Federal do Rio de Janeiro (UFRJ)
instacron_str UFRJ
institution UFRJ
reponame_str Repositório Institucional da UFRJ
collection Repositório Institucional da UFRJ
bitstream.url.fl_str_mv http://pantheon.ufrj.br:80/bitstream/11422/17253/1/monopoli10025995.pdf
http://pantheon.ufrj.br:80/bitstream/11422/17253/2/license.txt
bitstream.checksum.fl_str_mv 2d6c0a41ca708cef12dbc566189555eb
dd32849f2bfb22da963c3aac6e26e255
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)
repository.mail.fl_str_mv
_version_ 1784097206727344128