Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/26787 |
Resumo: | BACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing. |
id |
UFRN_13336aee6daf75ba7985b96f9c194bdd |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/26787 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Goto-Silva, LiviaAyad, Nadia M. E.Herzog, Iasmin L.Silva, Nilton P.Lamien, BernardOrlande, Helcio R. B.Souza, Annie da CostaRibeiro, Sidarta Tollendal GomesMartins, MicheleDomont, Gilberto B.Junqueira, MagnoTovar-Moll, FernandaRehen, Stevens K.2019-03-15T13:08:42Z2019-03-15T13:08:42Z2019-03-07GOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-yhttps://repositorio.ufrn.br/jspui/handle/123456789/2678710.1186/s12861-019-0183-yOrganoid culturesbrain organoidscomputational fluid dynamicsComputational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platformsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessTEXTSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.txtSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.txtExtracted texttext/plain38713https://repositorio.ufrn.br/bitstream/123456789/26787/3/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.txt710f56f21b3346d53fa5b93e3aaaf92aMD53THUMBNAILSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.jpgSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.jpgGenerated Thumbnailimage/jpeg1845https://repositorio.ufrn.br/bitstream/123456789/26787/4/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.jpg9e2344a51902216713d9bd89372462b3MD54ORIGINALSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdfSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdfSidartaRibeiro_ICe_2019_Computational fluid dynamicapplication/pdf2716255https://repositorio.ufrn.br/bitstream/123456789/26787/1/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf2b054267972cc5258e7e24217cc9c890MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/26787/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52123456789/267872021-07-10 18:45:56.082oai:https://repositorio.ufrn.br:123456789/26787Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T21:45:56Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
title |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
spellingShingle |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms Goto-Silva, Livia Organoid cultures brain organoids computational fluid dynamics |
title_short |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
title_full |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
title_fullStr |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
title_full_unstemmed |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
title_sort |
Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms |
author |
Goto-Silva, Livia |
author_facet |
Goto-Silva, Livia Ayad, Nadia M. E. Herzog, Iasmin L. Silva, Nilton P. Lamien, Bernard Orlande, Helcio R. B. Souza, Annie da Costa Ribeiro, Sidarta Tollendal Gomes Martins, Michele Domont, Gilberto B. Junqueira, Magno Tovar-Moll, Fernanda Rehen, Stevens K. |
author_role |
author |
author2 |
Ayad, Nadia M. E. Herzog, Iasmin L. Silva, Nilton P. Lamien, Bernard Orlande, Helcio R. B. Souza, Annie da Costa Ribeiro, Sidarta Tollendal Gomes Martins, Michele Domont, Gilberto B. Junqueira, Magno Tovar-Moll, Fernanda Rehen, Stevens K. |
author2_role |
author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Goto-Silva, Livia Ayad, Nadia M. E. Herzog, Iasmin L. Silva, Nilton P. Lamien, Bernard Orlande, Helcio R. B. Souza, Annie da Costa Ribeiro, Sidarta Tollendal Gomes Martins, Michele Domont, Gilberto B. Junqueira, Magno Tovar-Moll, Fernanda Rehen, Stevens K. |
dc.subject.por.fl_str_mv |
Organoid cultures brain organoids computational fluid dynamics |
topic |
Organoid cultures brain organoids computational fluid dynamics |
description |
BACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-03-15T13:08:42Z |
dc.date.available.fl_str_mv |
2019-03-15T13:08:42Z |
dc.date.issued.fl_str_mv |
2019-03-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-y |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/26787 |
dc.identifier.doi.none.fl_str_mv |
10.1186/s12861-019-0183-y |
identifier_str_mv |
GOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-y 10.1186/s12861-019-0183-y |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/26787 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/26787/3/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/26787/4/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.jpg https://repositorio.ufrn.br/bitstream/123456789/26787/1/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf https://repositorio.ufrn.br/bitstream/123456789/26787/2/license.txt |
bitstream.checksum.fl_str_mv |
710f56f21b3346d53fa5b93e3aaaf92a 9e2344a51902216713d9bd89372462b3 2b054267972cc5258e7e24217cc9c890 e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833067063246848 |