Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms

Detalhes bibliográficos
Autor(a) principal: Goto-Silva, Livia
Data de Publicação: 2019
Outros Autores: Ayad, Nadia M. E., Herzog, Iasmin L., Silva, Nilton P., Lamien, Bernard, Orlande, Helcio R. B., Souza, Annie da Costa, Ribeiro, Sidarta Tollendal Gomes, Martins, Michele, Domont, Gilberto B., Junqueira, Magno, Tovar-Moll, Fernanda, Rehen, Stevens K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/26787
Resumo: BACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.
id UFRN_13336aee6daf75ba7985b96f9c194bdd
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/26787
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Goto-Silva, LiviaAyad, Nadia M. E.Herzog, Iasmin L.Silva, Nilton P.Lamien, BernardOrlande, Helcio R. B.Souza, Annie da CostaRibeiro, Sidarta Tollendal GomesMartins, MicheleDomont, Gilberto B.Junqueira, MagnoTovar-Moll, FernandaRehen, Stevens K.2019-03-15T13:08:42Z2019-03-15T13:08:42Z2019-03-07GOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-yhttps://repositorio.ufrn.br/jspui/handle/123456789/2678710.1186/s12861-019-0183-yOrganoid culturesbrain organoidscomputational fluid dynamicsComputational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platformsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.engreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessTEXTSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.txtSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.txtExtracted texttext/plain38713https://repositorio.ufrn.br/bitstream/123456789/26787/3/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.txt710f56f21b3346d53fa5b93e3aaaf92aMD53THUMBNAILSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.jpgSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdf.jpgGenerated Thumbnailimage/jpeg1845https://repositorio.ufrn.br/bitstream/123456789/26787/4/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.jpg9e2344a51902216713d9bd89372462b3MD54ORIGINALSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdfSidartaRibeiro_ICe_2019_Computational fluid dynamic.pdfSidartaRibeiro_ICe_2019_Computational fluid dynamicapplication/pdf2716255https://repositorio.ufrn.br/bitstream/123456789/26787/1/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf2b054267972cc5258e7e24217cc9c890MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/26787/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52123456789/267872021-07-10 18:45:56.082oai:https://repositorio.ufrn.br:123456789/26787Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-07-10T21:45:56Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
title Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
spellingShingle Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
Goto-Silva, Livia
Organoid cultures
brain organoids
computational fluid dynamics
title_short Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
title_full Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
title_fullStr Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
title_full_unstemmed Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
title_sort Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms
author Goto-Silva, Livia
author_facet Goto-Silva, Livia
Ayad, Nadia M. E.
Herzog, Iasmin L.
Silva, Nilton P.
Lamien, Bernard
Orlande, Helcio R. B.
Souza, Annie da Costa
Ribeiro, Sidarta Tollendal Gomes
Martins, Michele
Domont, Gilberto B.
Junqueira, Magno
Tovar-Moll, Fernanda
Rehen, Stevens K.
author_role author
author2 Ayad, Nadia M. E.
Herzog, Iasmin L.
Silva, Nilton P.
Lamien, Bernard
Orlande, Helcio R. B.
Souza, Annie da Costa
Ribeiro, Sidarta Tollendal Gomes
Martins, Michele
Domont, Gilberto B.
Junqueira, Magno
Tovar-Moll, Fernanda
Rehen, Stevens K.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Goto-Silva, Livia
Ayad, Nadia M. E.
Herzog, Iasmin L.
Silva, Nilton P.
Lamien, Bernard
Orlande, Helcio R. B.
Souza, Annie da Costa
Ribeiro, Sidarta Tollendal Gomes
Martins, Michele
Domont, Gilberto B.
Junqueira, Magno
Tovar-Moll, Fernanda
Rehen, Stevens K.
dc.subject.por.fl_str_mv Organoid cultures
brain organoids
computational fluid dynamics
topic Organoid cultures
brain organoids
computational fluid dynamics
description BACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-03-15T13:08:42Z
dc.date.available.fl_str_mv 2019-03-15T13:08:42Z
dc.date.issued.fl_str_mv 2019-03-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv GOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-y
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/26787
dc.identifier.doi.none.fl_str_mv 10.1186/s12861-019-0183-y
identifier_str_mv GOTO-SILVA, L. et al. Computational fluid dynamic analysis of physical forces playing a role in brain organoid cultures in two different multiplex platforms. BMC Dev Biol., v. 19, n. 1, p. 3, mar. 2019. doi: 10.1186/s12861-019-0183-y
10.1186/s12861-019-0183-y
url https://repositorio.ufrn.br/jspui/handle/123456789/26787
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/26787/3/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/26787/4/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/26787/1/SidartaRibeiro_ICe_2019_Computational%20fluid%20dynamic.pdf
https://repositorio.ufrn.br/bitstream/123456789/26787/2/license.txt
bitstream.checksum.fl_str_mv 710f56f21b3346d53fa5b93e3aaaf92a
9e2344a51902216713d9bd89372462b3
2b054267972cc5258e7e24217cc9c890
e9597aa2854d128fd968be5edc8a28d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833067063246848