A PSO-inspired architecture to hybridise multi-objective metaheuristics

Detalhes bibliográficos
Autor(a) principal: Fernandes, Islame Felipe da Costa
Data de Publicação: 2020
Outros Autores: Silva, Igor Rosberg de Medeiros, Goldbarg, Elizabeth Ferreira Gouvea, Maia, Silvia Maria Diniz Monteiro, Goldbarg, Marco César
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30939
Resumo: Hybridisation is a technique that exploits and unites the best features of individual algorithms. The literature includes several hybridisation methodologies, among which there are general procedures, termed architectures, that provide generic functionalities and features for solving optimisation problems. Successful hybridisation methodologies have applied concepts of the multi-agent paradigm, such as cooperation and agent intelligence. However, there is still a lack concerning architectures for the hybridisation of multi-objective metaheuristics that fully explore these concepts. This study proposes a new architecture, named MO-MAHM, based on concepts from Particle Swarm Optimisation, to hybridise multi-objective metaheuristics. We apply the MO-MAHM to the Bi-objective Spanning Tree Problem. Four algorithms were hybridised within the MO-MAHM: three evolutionary algorithms and a local search method. We report the results of experiments with 180 instances, analyse the behaviour of the MO-MAHM, and compare to the results produced by algorithms proposed for the Bi-objective Spanning Tree Problem
id UFRN_175b2ff9117e6a491c3d8519dbb54f8f
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30939
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Fernandes, Islame Felipe da CostaSilva, Igor Rosberg de MedeirosGoldbarg, Elizabeth Ferreira GouveaMaia, Silvia Maria Diniz MonteiroGoldbarg, Marco César2020-12-09T17:23:42Z2020-12-09T17:23:42Z2020-06-22FERNANDES, I. F. C.; SILVA, I. R. M.; GOLDBARG, E. F. G.; MAIA, S. M. D. M.; GOLDBARG, M. C.. A PSO-inspired architecture to hybridise multi-objective metaheuristics. Memetic Computing, [S.L.], v. 12, n. 3, p. 235-249, 22 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s12293-020-00307-4. Acesso em: 07 out. 2020. http://dx.doi.org/10.1007/s12293-020-00307-4.1865-92921865-9284https://repositorio.ufrn.br/handle/123456789/3093910.1007/s12293-020-00307-4SpringerMulti-objective optimisationHybridisation of metaheuristicsBi-objective spanning treeA PSO-inspired architecture to hybridise multi-objective metaheuristicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleHybridisation is a technique that exploits and unites the best features of individual algorithms. The literature includes several hybridisation methodologies, among which there are general procedures, termed architectures, that provide generic functionalities and features for solving optimisation problems. Successful hybridisation methodologies have applied concepts of the multi-agent paradigm, such as cooperation and agent intelligence. However, there is still a lack concerning architectures for the hybridisation of multi-objective metaheuristics that fully explore these concepts. This study proposes a new architecture, named MO-MAHM, based on concepts from Particle Swarm Optimisation, to hybridise multi-objective metaheuristics. We apply the MO-MAHM to the Bi-objective Spanning Tree Problem. Four algorithms were hybridised within the MO-MAHM: three evolutionary algorithms and a local search method. We report the results of experiments with 180 instances, analyse the behaviour of the MO-MAHM, and compare to the results produced by algorithms proposed for the Bi-objective Spanning Tree Problemengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccess123456789/309392022-10-14 14:07:18.731oai:https://repositorio.ufrn.br:123456789/30939Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-14T17:07:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A PSO-inspired architecture to hybridise multi-objective metaheuristics
title A PSO-inspired architecture to hybridise multi-objective metaheuristics
spellingShingle A PSO-inspired architecture to hybridise multi-objective metaheuristics
Fernandes, Islame Felipe da Costa
Multi-objective optimisation
Hybridisation of metaheuristics
Bi-objective spanning tree
title_short A PSO-inspired architecture to hybridise multi-objective metaheuristics
title_full A PSO-inspired architecture to hybridise multi-objective metaheuristics
title_fullStr A PSO-inspired architecture to hybridise multi-objective metaheuristics
title_full_unstemmed A PSO-inspired architecture to hybridise multi-objective metaheuristics
title_sort A PSO-inspired architecture to hybridise multi-objective metaheuristics
author Fernandes, Islame Felipe da Costa
author_facet Fernandes, Islame Felipe da Costa
Silva, Igor Rosberg de Medeiros
Goldbarg, Elizabeth Ferreira Gouvea
Maia, Silvia Maria Diniz Monteiro
Goldbarg, Marco César
author_role author
author2 Silva, Igor Rosberg de Medeiros
Goldbarg, Elizabeth Ferreira Gouvea
Maia, Silvia Maria Diniz Monteiro
Goldbarg, Marco César
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fernandes, Islame Felipe da Costa
Silva, Igor Rosberg de Medeiros
Goldbarg, Elizabeth Ferreira Gouvea
Maia, Silvia Maria Diniz Monteiro
Goldbarg, Marco César
dc.subject.por.fl_str_mv Multi-objective optimisation
Hybridisation of metaheuristics
Bi-objective spanning tree
topic Multi-objective optimisation
Hybridisation of metaheuristics
Bi-objective spanning tree
description Hybridisation is a technique that exploits and unites the best features of individual algorithms. The literature includes several hybridisation methodologies, among which there are general procedures, termed architectures, that provide generic functionalities and features for solving optimisation problems. Successful hybridisation methodologies have applied concepts of the multi-agent paradigm, such as cooperation and agent intelligence. However, there is still a lack concerning architectures for the hybridisation of multi-objective metaheuristics that fully explore these concepts. This study proposes a new architecture, named MO-MAHM, based on concepts from Particle Swarm Optimisation, to hybridise multi-objective metaheuristics. We apply the MO-MAHM to the Bi-objective Spanning Tree Problem. Four algorithms were hybridised within the MO-MAHM: three evolutionary algorithms and a local search method. We report the results of experiments with 180 instances, analyse the behaviour of the MO-MAHM, and compare to the results produced by algorithms proposed for the Bi-objective Spanning Tree Problem
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-12-09T17:23:42Z
dc.date.available.fl_str_mv 2020-12-09T17:23:42Z
dc.date.issued.fl_str_mv 2020-06-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERNANDES, I. F. C.; SILVA, I. R. M.; GOLDBARG, E. F. G.; MAIA, S. M. D. M.; GOLDBARG, M. C.. A PSO-inspired architecture to hybridise multi-objective metaheuristics. Memetic Computing, [S.L.], v. 12, n. 3, p. 235-249, 22 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s12293-020-00307-4. Acesso em: 07 out. 2020. http://dx.doi.org/10.1007/s12293-020-00307-4.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30939
dc.identifier.issn.none.fl_str_mv 1865-9292
1865-9284
dc.identifier.doi.none.fl_str_mv 10.1007/s12293-020-00307-4
identifier_str_mv FERNANDES, I. F. C.; SILVA, I. R. M.; GOLDBARG, E. F. G.; MAIA, S. M. D. M.; GOLDBARG, M. C.. A PSO-inspired architecture to hybridise multi-objective metaheuristics. Memetic Computing, [S.L.], v. 12, n. 3, p. 235-249, 22 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s12293-020-00307-4. Acesso em: 07 out. 2020. http://dx.doi.org/10.1007/s12293-020-00307-4.
1865-9292
1865-9284
10.1007/s12293-020-00307-4
url https://repositorio.ufrn.br/handle/123456789/30939
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832768503250944