A PSO-inspired architecture to hybridise multi-objective metaheuristics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30939 |
Resumo: | Hybridisation is a technique that exploits and unites the best features of individual algorithms. The literature includes several hybridisation methodologies, among which there are general procedures, termed architectures, that provide generic functionalities and features for solving optimisation problems. Successful hybridisation methodologies have applied concepts of the multi-agent paradigm, such as cooperation and agent intelligence. However, there is still a lack concerning architectures for the hybridisation of multi-objective metaheuristics that fully explore these concepts. This study proposes a new architecture, named MO-MAHM, based on concepts from Particle Swarm Optimisation, to hybridise multi-objective metaheuristics. We apply the MO-MAHM to the Bi-objective Spanning Tree Problem. Four algorithms were hybridised within the MO-MAHM: three evolutionary algorithms and a local search method. We report the results of experiments with 180 instances, analyse the behaviour of the MO-MAHM, and compare to the results produced by algorithms proposed for the Bi-objective Spanning Tree Problem |
id |
UFRN_175b2ff9117e6a491c3d8519dbb54f8f |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30939 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Fernandes, Islame Felipe da CostaSilva, Igor Rosberg de MedeirosGoldbarg, Elizabeth Ferreira GouveaMaia, Silvia Maria Diniz MonteiroGoldbarg, Marco César2020-12-09T17:23:42Z2020-12-09T17:23:42Z2020-06-22FERNANDES, I. F. C.; SILVA, I. R. M.; GOLDBARG, E. F. G.; MAIA, S. M. D. M.; GOLDBARG, M. C.. A PSO-inspired architecture to hybridise multi-objective metaheuristics. Memetic Computing, [S.L.], v. 12, n. 3, p. 235-249, 22 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s12293-020-00307-4. Acesso em: 07 out. 2020. http://dx.doi.org/10.1007/s12293-020-00307-4.1865-92921865-9284https://repositorio.ufrn.br/handle/123456789/3093910.1007/s12293-020-00307-4SpringerMulti-objective optimisationHybridisation of metaheuristicsBi-objective spanning treeA PSO-inspired architecture to hybridise multi-objective metaheuristicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleHybridisation is a technique that exploits and unites the best features of individual algorithms. The literature includes several hybridisation methodologies, among which there are general procedures, termed architectures, that provide generic functionalities and features for solving optimisation problems. Successful hybridisation methodologies have applied concepts of the multi-agent paradigm, such as cooperation and agent intelligence. However, there is still a lack concerning architectures for the hybridisation of multi-objective metaheuristics that fully explore these concepts. This study proposes a new architecture, named MO-MAHM, based on concepts from Particle Swarm Optimisation, to hybridise multi-objective metaheuristics. We apply the MO-MAHM to the Bi-objective Spanning Tree Problem. Four algorithms were hybridised within the MO-MAHM: three evolutionary algorithms and a local search method. We report the results of experiments with 180 instances, analyse the behaviour of the MO-MAHM, and compare to the results produced by algorithms proposed for the Bi-objective Spanning Tree Problemengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccess123456789/309392022-10-14 14:07:18.731oai:https://repositorio.ufrn.br:123456789/30939Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-10-14T17:07:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
title |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
spellingShingle |
A PSO-inspired architecture to hybridise multi-objective metaheuristics Fernandes, Islame Felipe da Costa Multi-objective optimisation Hybridisation of metaheuristics Bi-objective spanning tree |
title_short |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
title_full |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
title_fullStr |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
title_full_unstemmed |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
title_sort |
A PSO-inspired architecture to hybridise multi-objective metaheuristics |
author |
Fernandes, Islame Felipe da Costa |
author_facet |
Fernandes, Islame Felipe da Costa Silva, Igor Rosberg de Medeiros Goldbarg, Elizabeth Ferreira Gouvea Maia, Silvia Maria Diniz Monteiro Goldbarg, Marco César |
author_role |
author |
author2 |
Silva, Igor Rosberg de Medeiros Goldbarg, Elizabeth Ferreira Gouvea Maia, Silvia Maria Diniz Monteiro Goldbarg, Marco César |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Fernandes, Islame Felipe da Costa Silva, Igor Rosberg de Medeiros Goldbarg, Elizabeth Ferreira Gouvea Maia, Silvia Maria Diniz Monteiro Goldbarg, Marco César |
dc.subject.por.fl_str_mv |
Multi-objective optimisation Hybridisation of metaheuristics Bi-objective spanning tree |
topic |
Multi-objective optimisation Hybridisation of metaheuristics Bi-objective spanning tree |
description |
Hybridisation is a technique that exploits and unites the best features of individual algorithms. The literature includes several hybridisation methodologies, among which there are general procedures, termed architectures, that provide generic functionalities and features for solving optimisation problems. Successful hybridisation methodologies have applied concepts of the multi-agent paradigm, such as cooperation and agent intelligence. However, there is still a lack concerning architectures for the hybridisation of multi-objective metaheuristics that fully explore these concepts. This study proposes a new architecture, named MO-MAHM, based on concepts from Particle Swarm Optimisation, to hybridise multi-objective metaheuristics. We apply the MO-MAHM to the Bi-objective Spanning Tree Problem. Four algorithms were hybridised within the MO-MAHM: three evolutionary algorithms and a local search method. We report the results of experiments with 180 instances, analyse the behaviour of the MO-MAHM, and compare to the results produced by algorithms proposed for the Bi-objective Spanning Tree Problem |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-12-09T17:23:42Z |
dc.date.available.fl_str_mv |
2020-12-09T17:23:42Z |
dc.date.issued.fl_str_mv |
2020-06-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERNANDES, I. F. C.; SILVA, I. R. M.; GOLDBARG, E. F. G.; MAIA, S. M. D. M.; GOLDBARG, M. C.. A PSO-inspired architecture to hybridise multi-objective metaheuristics. Memetic Computing, [S.L.], v. 12, n. 3, p. 235-249, 22 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s12293-020-00307-4. Acesso em: 07 out. 2020. http://dx.doi.org/10.1007/s12293-020-00307-4. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30939 |
dc.identifier.issn.none.fl_str_mv |
1865-9292 1865-9284 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12293-020-00307-4 |
identifier_str_mv |
FERNANDES, I. F. C.; SILVA, I. R. M.; GOLDBARG, E. F. G.; MAIA, S. M. D. M.; GOLDBARG, M. C.. A PSO-inspired architecture to hybridise multi-objective metaheuristics. Memetic Computing, [S.L.], v. 12, n. 3, p. 235-249, 22 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s12293-020-00307-4. Acesso em: 07 out. 2020. http://dx.doi.org/10.1007/s12293-020-00307-4. 1865-9292 1865-9284 10.1007/s12293-020-00307-4 |
url |
https://repositorio.ufrn.br/handle/123456789/30939 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832768503250944 |