Hybrid and subexponential linear logics

Detalhes bibliográficos
Autor(a) principal: Despeyroux, Joelle
Data de Publicação: 2017
Outros Autores: Pimentel, Elaine Gouvea, Vega, Carlos Alberto Olarte
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/29756
Resumo: HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL's logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELL (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully encode the behavior of such temporal operators
id UFRN_1a5cf20b471b37f60d40ac2882f6dad4
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/29756
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Despeyroux, JoellePimentel, Elaine GouveaVega, Carlos Alberto Olarte2020-07-30T18:10:25Z2020-07-30T18:10:25Z2017DESPEYROUX, Joëlle; OLARTE, Carlos; PIMENTEL, Elaine. Hybrid and Subexponential Linear Logics. Electronic Notes in Theoretical Computer Science, [S.L.], v. 332, p. 95-111, jun. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1571066117300178?via%3Dihub. Acesso em: 29 Jul. 2020. http://dx.doi.org/10.1016/j.entcs.2017.04.007.1571-0661https://repositorio.ufrn.br/jspui/handle/123456789/2975610.1016/j.entcs.2017.04.007ElsevierLinear logicHybrid Linear LogicSubexponentialsLogical frameworksTemporal LogicHybrid and subexponential linear logicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleHyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL's logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELL (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully encode the behavior of such temporal operatorsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALHybridAndSubexponential_VEGA_2017.pdfHybridAndSubexponential_VEGA_2017.pdfapplication/pdf304548https://repositorio.ufrn.br/bitstream/123456789/29756/1/HybridAndSubexponential_VEGA_2017.pdfca356275733cdcdd6d1c96851d8f40b0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/29756/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTHybridAndSubexponential_VEGA_2017.pdf.txtHybridAndSubexponential_VEGA_2017.pdf.txtExtracted texttext/plain50090https://repositorio.ufrn.br/bitstream/123456789/29756/3/HybridAndSubexponential_VEGA_2017.pdf.txt59520feea39eec794bb4e3ea8f0a66b9MD53THUMBNAILHybridAndSubexponential_VEGA_2017.pdf.jpgHybridAndSubexponential_VEGA_2017.pdf.jpgGenerated Thumbnailimage/jpeg1543https://repositorio.ufrn.br/bitstream/123456789/29756/4/HybridAndSubexponential_VEGA_2017.pdf.jpgfb12e9014bd6949cc41cf7157341ea7eMD54123456789/297562020-08-04 13:55:44.287oai:https://repositorio.ufrn.br:123456789/29756Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-08-04T16:55:44Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Hybrid and subexponential linear logics
title Hybrid and subexponential linear logics
spellingShingle Hybrid and subexponential linear logics
Despeyroux, Joelle
Linear logic
Hybrid Linear Logic
Subexponentials
Logical frameworks
Temporal Logic
title_short Hybrid and subexponential linear logics
title_full Hybrid and subexponential linear logics
title_fullStr Hybrid and subexponential linear logics
title_full_unstemmed Hybrid and subexponential linear logics
title_sort Hybrid and subexponential linear logics
author Despeyroux, Joelle
author_facet Despeyroux, Joelle
Pimentel, Elaine Gouvea
Vega, Carlos Alberto Olarte
author_role author
author2 Pimentel, Elaine Gouvea
Vega, Carlos Alberto Olarte
author2_role author
author
dc.contributor.author.fl_str_mv Despeyroux, Joelle
Pimentel, Elaine Gouvea
Vega, Carlos Alberto Olarte
dc.subject.por.fl_str_mv Linear logic
Hybrid Linear Logic
Subexponentials
Logical frameworks
Temporal Logic
topic Linear logic
Hybrid Linear Logic
Subexponentials
Logical frameworks
Temporal Logic
description HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL's logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELL (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully encode the behavior of such temporal operators
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2020-07-30T18:10:25Z
dc.date.available.fl_str_mv 2020-07-30T18:10:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv DESPEYROUX, Joëlle; OLARTE, Carlos; PIMENTEL, Elaine. Hybrid and Subexponential Linear Logics. Electronic Notes in Theoretical Computer Science, [S.L.], v. 332, p. 95-111, jun. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1571066117300178?via%3Dihub. Acesso em: 29 Jul. 2020. http://dx.doi.org/10.1016/j.entcs.2017.04.007.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/29756
dc.identifier.issn.none.fl_str_mv 1571-0661
dc.identifier.doi.none.fl_str_mv 10.1016/j.entcs.2017.04.007
identifier_str_mv DESPEYROUX, Joëlle; OLARTE, Carlos; PIMENTEL, Elaine. Hybrid and Subexponential Linear Logics. Electronic Notes in Theoretical Computer Science, [S.L.], v. 332, p. 95-111, jun. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1571066117300178?via%3Dihub. Acesso em: 29 Jul. 2020. http://dx.doi.org/10.1016/j.entcs.2017.04.007.
1571-0661
10.1016/j.entcs.2017.04.007
url https://repositorio.ufrn.br/jspui/handle/123456789/29756
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/29756/1/HybridAndSubexponential_VEGA_2017.pdf
https://repositorio.ufrn.br/bitstream/123456789/29756/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/29756/3/HybridAndSubexponential_VEGA_2017.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/29756/4/HybridAndSubexponential_VEGA_2017.pdf.jpg
bitstream.checksum.fl_str_mv ca356275733cdcdd6d1c96851d8f40b0
e9597aa2854d128fd968be5edc8a28d9
59520feea39eec794bb4e3ea8f0a66b9
fb12e9014bd6949cc41cf7157341ea7e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832721145364480