Hybrid and subexponential linear logics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/29756 |
Resumo: | HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL's logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELL (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully encode the behavior of such temporal operators |
id |
UFRN_1a5cf20b471b37f60d40ac2882f6dad4 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/29756 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Despeyroux, JoellePimentel, Elaine GouveaVega, Carlos Alberto Olarte2020-07-30T18:10:25Z2020-07-30T18:10:25Z2017DESPEYROUX, Joëlle; OLARTE, Carlos; PIMENTEL, Elaine. Hybrid and Subexponential Linear Logics. Electronic Notes in Theoretical Computer Science, [S.L.], v. 332, p. 95-111, jun. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1571066117300178?via%3Dihub. Acesso em: 29 Jul. 2020. http://dx.doi.org/10.1016/j.entcs.2017.04.007.1571-0661https://repositorio.ufrn.br/jspui/handle/123456789/2975610.1016/j.entcs.2017.04.007ElsevierLinear logicHybrid Linear LogicSubexponentialsLogical frameworksTemporal LogicHybrid and subexponential linear logicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleHyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL's logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELL (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully encode the behavior of such temporal operatorsengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALHybridAndSubexponential_VEGA_2017.pdfHybridAndSubexponential_VEGA_2017.pdfapplication/pdf304548https://repositorio.ufrn.br/bitstream/123456789/29756/1/HybridAndSubexponential_VEGA_2017.pdfca356275733cdcdd6d1c96851d8f40b0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/29756/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52TEXTHybridAndSubexponential_VEGA_2017.pdf.txtHybridAndSubexponential_VEGA_2017.pdf.txtExtracted texttext/plain50090https://repositorio.ufrn.br/bitstream/123456789/29756/3/HybridAndSubexponential_VEGA_2017.pdf.txt59520feea39eec794bb4e3ea8f0a66b9MD53THUMBNAILHybridAndSubexponential_VEGA_2017.pdf.jpgHybridAndSubexponential_VEGA_2017.pdf.jpgGenerated Thumbnailimage/jpeg1543https://repositorio.ufrn.br/bitstream/123456789/29756/4/HybridAndSubexponential_VEGA_2017.pdf.jpgfb12e9014bd6949cc41cf7157341ea7eMD54123456789/297562020-08-04 13:55:44.287oai:https://repositorio.ufrn.br:123456789/29756Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-08-04T16:55:44Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Hybrid and subexponential linear logics |
title |
Hybrid and subexponential linear logics |
spellingShingle |
Hybrid and subexponential linear logics Despeyroux, Joelle Linear logic Hybrid Linear Logic Subexponentials Logical frameworks Temporal Logic |
title_short |
Hybrid and subexponential linear logics |
title_full |
Hybrid and subexponential linear logics |
title_fullStr |
Hybrid and subexponential linear logics |
title_full_unstemmed |
Hybrid and subexponential linear logics |
title_sort |
Hybrid and subexponential linear logics |
author |
Despeyroux, Joelle |
author_facet |
Despeyroux, Joelle Pimentel, Elaine Gouvea Vega, Carlos Alberto Olarte |
author_role |
author |
author2 |
Pimentel, Elaine Gouvea Vega, Carlos Alberto Olarte |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Despeyroux, Joelle Pimentel, Elaine Gouvea Vega, Carlos Alberto Olarte |
dc.subject.por.fl_str_mv |
Linear logic Hybrid Linear Logic Subexponentials Logical frameworks Temporal Logic |
topic |
Linear logic Hybrid Linear Logic Subexponentials Logical frameworks Temporal Logic |
description |
HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations, and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL's logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELL (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. We conclude our expressiveness study by showing that previous attempts of encoding Computational Tree Logic (CTL) operators into HyLL cannot be extended to consider the whole set of temporal connectives. We show that a system of LL with fixed points is indeed needed to faithfully encode the behavior of such temporal operators |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017 |
dc.date.accessioned.fl_str_mv |
2020-07-30T18:10:25Z |
dc.date.available.fl_str_mv |
2020-07-30T18:10:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DESPEYROUX, Joëlle; OLARTE, Carlos; PIMENTEL, Elaine. Hybrid and Subexponential Linear Logics. Electronic Notes in Theoretical Computer Science, [S.L.], v. 332, p. 95-111, jun. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1571066117300178?via%3Dihub. Acesso em: 29 Jul. 2020. http://dx.doi.org/10.1016/j.entcs.2017.04.007. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/29756 |
dc.identifier.issn.none.fl_str_mv |
1571-0661 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.entcs.2017.04.007 |
identifier_str_mv |
DESPEYROUX, Joëlle; OLARTE, Carlos; PIMENTEL, Elaine. Hybrid and Subexponential Linear Logics. Electronic Notes in Theoretical Computer Science, [S.L.], v. 332, p. 95-111, jun. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S1571066117300178?via%3Dihub. Acesso em: 29 Jul. 2020. http://dx.doi.org/10.1016/j.entcs.2017.04.007. 1571-0661 10.1016/j.entcs.2017.04.007 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/29756 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/29756/1/HybridAndSubexponential_VEGA_2017.pdf https://repositorio.ufrn.br/bitstream/123456789/29756/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/29756/3/HybridAndSubexponential_VEGA_2017.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/29756/4/HybridAndSubexponential_VEGA_2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
ca356275733cdcdd6d1c96851d8f40b0 e9597aa2854d128fd968be5edc8a28d9 59520feea39eec794bb4e3ea8f0a66b9 fb12e9014bd6949cc41cf7157341ea7e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832721145364480 |