In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/54175 |
Resumo: | To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain’s rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs’ effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain’s functional architecture |
id |
UFRN_1ac7a4fad2fa868d7487544cd2ae293d |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/54175 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Luppi, Andrea I.Hansen, Justine Y.Adapa, RamCarhart-Harris, Robin L.Roseman, LeorTimmermann, ChristopherGolkowski, DanielRanft, AndreasIlg, RüdigerJordan, DenisBonhomme, VincentVanhaudenhuyse, AudreyDemertzi, AthenaJaquet, OceaneBahri, Mohamed AliAlnagger, Naji L. N.Cardone, PaoloPeattie, Alexander R. D.Manktelow, Anne E.Araujo, Draulio Barros deSensi, Stefano L.Owen, Adrian M.Naci, LorinaMenon, David K.Misic, BratislavStamatakis, Emmanuel A.2023-07-26T12:13:24Z2023-07-26T12:13:24Z2023-06LUPPI, Andrea I.; HANSEN, Justine Y.; ADAPA, Ram; CARHART-HARRIS, Robin L.; ROSEMAN, Leor; TIMMERMANN, Christopher; GOLKOWSKI, Daniel; RANFT, Andreas; ILG, Rüdiger; JORDAN, Denis et al. In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape. Science Advances, [S. l.], v. 9, n. 24, p. eadf8332, jun. 2023. Doi: http://dx.doi.org/10.1126/sciadv.adf8332. Disponível em: https://www.science.org/doi/10.1126/sciadv.adf8332. Acesso em: 25 jul. 2023.https://repositorio.ufrn.br/handle/123456789/5417510.1126/sciadv.adf8332American Association for the Advancement of Science (AAAS)Attribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessNeurotransmitter landscape - Human brainPsychoactive drugs - Brain functionMolecular chemoarchitectureBrain’s functional architectureIn vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscapeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleTo understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain’s rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs’ effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain’s functional architectureengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALVivoMappingofPharmacologically_Araujo_2023.pdfVivoMappingofPharmacologically_Araujo_2023.pdfVivoMappingofPharmacologically_Araujo_2023application/pdf2109852https://repositorio.ufrn.br/bitstream/123456789/54175/1/VivoMappingofPharmacologically_Araujo_2023.pdf85a2b1c135b66c32f731ad1f037562a2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/54175/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/54175/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53123456789/541752023-07-26 09:13:25.204oai:https://repositorio.ufrn.br:123456789/54175Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-07-26T12:13:25Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
title |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
spellingShingle |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape Luppi, Andrea I. Neurotransmitter landscape - Human brain Psychoactive drugs - Brain function Molecular chemoarchitecture Brain’s functional architecture |
title_short |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
title_full |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
title_fullStr |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
title_full_unstemmed |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
title_sort |
In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape |
author |
Luppi, Andrea I. |
author_facet |
Luppi, Andrea I. Hansen, Justine Y. Adapa, Ram Carhart-Harris, Robin L. Roseman, Leor Timmermann, Christopher Golkowski, Daniel Ranft, Andreas Ilg, Rüdiger Jordan, Denis Bonhomme, Vincent Vanhaudenhuyse, Audrey Demertzi, Athena Jaquet, Oceane Bahri, Mohamed Ali Alnagger, Naji L. N. Cardone, Paolo Peattie, Alexander R. D. Manktelow, Anne E. Araujo, Draulio Barros de Sensi, Stefano L. Owen, Adrian M. Naci, Lorina Menon, David K. Misic, Bratislav Stamatakis, Emmanuel A. |
author_role |
author |
author2 |
Hansen, Justine Y. Adapa, Ram Carhart-Harris, Robin L. Roseman, Leor Timmermann, Christopher Golkowski, Daniel Ranft, Andreas Ilg, Rüdiger Jordan, Denis Bonhomme, Vincent Vanhaudenhuyse, Audrey Demertzi, Athena Jaquet, Oceane Bahri, Mohamed Ali Alnagger, Naji L. N. Cardone, Paolo Peattie, Alexander R. D. Manktelow, Anne E. Araujo, Draulio Barros de Sensi, Stefano L. Owen, Adrian M. Naci, Lorina Menon, David K. Misic, Bratislav Stamatakis, Emmanuel A. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Luppi, Andrea I. Hansen, Justine Y. Adapa, Ram Carhart-Harris, Robin L. Roseman, Leor Timmermann, Christopher Golkowski, Daniel Ranft, Andreas Ilg, Rüdiger Jordan, Denis Bonhomme, Vincent Vanhaudenhuyse, Audrey Demertzi, Athena Jaquet, Oceane Bahri, Mohamed Ali Alnagger, Naji L. N. Cardone, Paolo Peattie, Alexander R. D. Manktelow, Anne E. Araujo, Draulio Barros de Sensi, Stefano L. Owen, Adrian M. Naci, Lorina Menon, David K. Misic, Bratislav Stamatakis, Emmanuel A. |
dc.subject.por.fl_str_mv |
Neurotransmitter landscape - Human brain Psychoactive drugs - Brain function Molecular chemoarchitecture Brain’s functional architecture |
topic |
Neurotransmitter landscape - Human brain Psychoactive drugs - Brain function Molecular chemoarchitecture Brain’s functional architecture |
description |
To understand how pharmacological interventions can exert their powerful effects on brain function, we need to understand how they engage the brain’s rich neurotransmitter landscape. Here, we bridge microscale molecular chemoarchitecture and pharmacologically induced macroscale functional reorganization, by relating the regional distribution of 19 neurotransmitter receptors and transporters obtained from positron emission tomography, and the regional changes in functional magnetic resonance imaging connectivity induced by 10 different mind-altering drugs: propofol, sevoflurane, ketamine, lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), ayahuasca, 3,4-methylenedioxymethamphetamine (MDMA), modafinil, and methylphenidate. Our results reveal a many-to-many mapping between psychoactive drugs’ effects on brain function and multiple neurotransmitter systems. The effects of both anesthetics and psychedelics on brain function are organized along hierarchical gradients of brain structure and function. Last, we show that regional co-susceptibility to pharmacological interventions recapitulates co-susceptibility to disorder-induced structural alterations. Collectively, these results highlight rich statistical patterns relating molecular chemoarchitecture and drug-induced reorganization of the brain’s functional architecture |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-07-26T12:13:24Z |
dc.date.available.fl_str_mv |
2023-07-26T12:13:24Z |
dc.date.issued.fl_str_mv |
2023-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LUPPI, Andrea I.; HANSEN, Justine Y.; ADAPA, Ram; CARHART-HARRIS, Robin L.; ROSEMAN, Leor; TIMMERMANN, Christopher; GOLKOWSKI, Daniel; RANFT, Andreas; ILG, Rüdiger; JORDAN, Denis et al. In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape. Science Advances, [S. l.], v. 9, n. 24, p. eadf8332, jun. 2023. Doi: http://dx.doi.org/10.1126/sciadv.adf8332. Disponível em: https://www.science.org/doi/10.1126/sciadv.adf8332. Acesso em: 25 jul. 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/54175 |
dc.identifier.doi.none.fl_str_mv |
10.1126/sciadv.adf8332 |
identifier_str_mv |
LUPPI, Andrea I.; HANSEN, Justine Y.; ADAPA, Ram; CARHART-HARRIS, Robin L.; ROSEMAN, Leor; TIMMERMANN, Christopher; GOLKOWSKI, Daniel; RANFT, Andreas; ILG, Rüdiger; JORDAN, Denis et al. In vivo mapping of pharmacologically induced functional reorganization onto the human brain’s neurotransmitter landscape. Science Advances, [S. l.], v. 9, n. 24, p. eadf8332, jun. 2023. Doi: http://dx.doi.org/10.1126/sciadv.adf8332. Disponível em: https://www.science.org/doi/10.1126/sciadv.adf8332. Acesso em: 25 jul. 2023. 10.1126/sciadv.adf8332 |
url |
https://repositorio.ufrn.br/handle/123456789/54175 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
American Association for the Advancement of Science (AAAS) |
publisher.none.fl_str_mv |
American Association for the Advancement of Science (AAAS) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/54175/1/VivoMappingofPharmacologically_Araujo_2023.pdf https://repositorio.ufrn.br/bitstream/123456789/54175/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/54175/3/license.txt |
bitstream.checksum.fl_str_mv |
85a2b1c135b66c32f731ad1f037562a2 4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832722166677504 |