Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil

Detalhes bibliográficos
Autor(a) principal: Busman, Débora Vieira
Data de Publicação: 2014
Outros Autores: Amaro, Venerando Eustáquio, Prudêncio, Mattheus da Cunha
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/31043
Resumo: Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach
id UFRN_24bad3dffa60995ceda3085f398d95ea
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/31043
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Busman, Débora VieiraAmaro, Venerando EustáquioPrudêncio, Mattheus da Cunha2020-12-17T20:10:42Z2020-12-17T20:10:42Z2014BUSMAN, D. V.; AMARO, V. E.; PRUDENCIO, M. C.. Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil. World Academy of Science, Engineering and Technology, v. 8, p. 17-21, 2014. Disponível em: https://publications.waset.org/9997740/comparison-of-prognostic-models-in-different-scenarios-of-shoreline-position-on-ponta-negra-beach-in-northeastern-brazil. Acesso em: 07 dez. 2020. https://doi.org/10.5281/zenodo.10914121307-6892https://repositorio.ufrn.br/handle/123456789/3104310.5281/zenodo.1091412World Academy of Science, Engineering and TechnologyAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCoastal ErosionPrognostic ModelDSASComparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazilinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePrognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beachengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALComparisonPrognosticModels_AMARO_2014.pdfComparisonPrognosticModels_AMARO_2014.pdfapplication/pdf827004https://repositorio.ufrn.br/bitstream/123456789/31043/1/ComparisonPrognosticModels_AMARO_2014.pdf4de74a651eba4d86d5118041933d6c4eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/31043/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31043/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTComparisonPrognosticModels_AMARO_2014.pdf.txtComparisonPrognosticModels_AMARO_2014.pdf.txtExtracted texttext/plain26060https://repositorio.ufrn.br/bitstream/123456789/31043/4/ComparisonPrognosticModels_AMARO_2014.pdf.txt96bf81f6d8fe6c50d6ad59d2a44b0f32MD54THUMBNAILComparisonPrognosticModels_AMARO_2014.pdf.jpgComparisonPrognosticModels_AMARO_2014.pdf.jpgGenerated Thumbnailimage/jpeg1727https://repositorio.ufrn.br/bitstream/123456789/31043/5/ComparisonPrognosticModels_AMARO_2014.pdf.jpg3f575795381888859459458a3f8b4542MD55123456789/310432020-12-20 04:59:53.954oai:https://repositorio.ufrn.br:123456789/31043Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2020-12-20T07:59:53Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
title Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
spellingShingle Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
Busman, Débora Vieira
Coastal Erosion
Prognostic Model
DSAS
title_short Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
title_full Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
title_fullStr Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
title_full_unstemmed Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
title_sort Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil
author Busman, Débora Vieira
author_facet Busman, Débora Vieira
Amaro, Venerando Eustáquio
Prudêncio, Mattheus da Cunha
author_role author
author2 Amaro, Venerando Eustáquio
Prudêncio, Mattheus da Cunha
author2_role author
author
dc.contributor.author.fl_str_mv Busman, Débora Vieira
Amaro, Venerando Eustáquio
Prudêncio, Mattheus da Cunha
dc.subject.por.fl_str_mv Coastal Erosion
Prognostic Model
DSAS
topic Coastal Erosion
Prognostic Model
DSAS
description Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach
publishDate 2014
dc.date.issued.fl_str_mv 2014
dc.date.accessioned.fl_str_mv 2020-12-17T20:10:42Z
dc.date.available.fl_str_mv 2020-12-17T20:10:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BUSMAN, D. V.; AMARO, V. E.; PRUDENCIO, M. C.. Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil. World Academy of Science, Engineering and Technology, v. 8, p. 17-21, 2014. Disponível em: https://publications.waset.org/9997740/comparison-of-prognostic-models-in-different-scenarios-of-shoreline-position-on-ponta-negra-beach-in-northeastern-brazil. Acesso em: 07 dez. 2020. https://doi.org/10.5281/zenodo.1091412
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/31043
dc.identifier.issn.none.fl_str_mv 1307-6892
dc.identifier.doi.none.fl_str_mv 10.5281/zenodo.1091412
identifier_str_mv BUSMAN, D. V.; AMARO, V. E.; PRUDENCIO, M. C.. Comparison of prognostic models in different scenarios of shoreline position on Ponta Negra beach in Northeastern Brazil. World Academy of Science, Engineering and Technology, v. 8, p. 17-21, 2014. Disponível em: https://publications.waset.org/9997740/comparison-of-prognostic-models-in-different-scenarios-of-shoreline-position-on-ponta-negra-beach-in-northeastern-brazil. Acesso em: 07 dez. 2020. https://doi.org/10.5281/zenodo.1091412
1307-6892
10.5281/zenodo.1091412
url https://repositorio.ufrn.br/handle/123456789/31043
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv World Academy of Science, Engineering and Technology
publisher.none.fl_str_mv World Academy of Science, Engineering and Technology
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/31043/1/ComparisonPrognosticModels_AMARO_2014.pdf
https://repositorio.ufrn.br/bitstream/123456789/31043/2/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/31043/3/license.txt
https://repositorio.ufrn.br/bitstream/123456789/31043/4/ComparisonPrognosticModels_AMARO_2014.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/31043/5/ComparisonPrognosticModels_AMARO_2014.pdf.jpg
bitstream.checksum.fl_str_mv 4de74a651eba4d86d5118041933d6c4e
4d2950bda3d176f570a9f8b328dfbbef
e9597aa2854d128fd968be5edc8a28d9
96bf81f6d8fe6c50d6ad59d2a44b0f32
3f575795381888859459458a3f8b4542
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832848814735360