Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D

Detalhes bibliográficos
Autor(a) principal: Nascimento, Rutinaldo Aguiar
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/55120
Resumo: A Inversão Completa da Forma da Onda (Full Waveform Inversion - FWI) é formulada como um problema de otimização não linear, que tradicionalmente utiliza métodos de minimização local baseados em derivadas para encontrar o campo escalar de propriedades físicas da subsuperfície que melhor represente os dados sísmicos de campo. No entanto, esses métodos possuem um alto custo computacional e uma precisão limitada a mínimos locais, além de sofrerem com uma lenta taxa de convergência (cycle-skipping). Portanto, neste trabalho, foi desenvolvido um algoritmo de otimização híbrido de duas fases baseado em algoritmos de otimização livre de derivadas (Derivative Free Optimization - DFO). Na primeira fase, utiliza-se a minimização global e a técnica de agrupamento, enquanto na segunda fase é adotada a minimização local. Na Fase 1, foram utilizados o algoritmo de otimização por enxame de partículas (Particle Swarm Optmization - PSO) e o K-means. Na Fase 2, foi utilizado o Simplex Adaptativo de Nelder-Mead (Adaptive Nelder-Mead Simplex - ANMS). O novo algoritmo híbrido foi denominado de PSO-Kmeans-ANMS, no qual o K-means é responsável por dividir o enxame de partículas em dois clusters em cada iteração. Essa estratégia visa equilibrar automaticamente os mecanismos de exploração e explotação do espaço de busca de parâmetros, permitindo encontrar soluções mais precisas e, consequentemente, melhorar a convergência. O algoritmo híbrido proposto foi validado no conjunto de 12 funções benchmark e, em seguida, aplicado ao problema FWI 1D. Os resultados do PSO-Kmeans-ANMS foram comparados com os obtidos pelos algoritmos PSO clássico, PSO modificado e ANMS. As métricas utilizadas foram o tempo médio de execução e a taxa de sucesso, que aceitou erros de até ±4% da solução ótima. Em todos os experimentos de validação e na aplicação da FWI, o algoritmo PSO-Kmeans-ANMS apresentou desempenho satisfatório, fornencendo resultados precisos e confiáveis, o que comprova sua robustez e eficiência computacional. Além disso, a aplicação desse algoritmo híbrido na FWI proporcionou uma redução significativa no custo computacional, representando assim um resultado importante e promissor para a área da sísmica. A Inversão Completa da Forma da Onda (Full Waveform Inversion - FWI) é formulada como um problema de otimização não linear, que tradicionalmente utiliza métodos de minimização local baseados em derivadas para encontrar o campo escalar de propriedades físicas da subsuperfície que melhor represente os dados sísmicos de campo. No entanto, esses métodos possuem um alto custo computacional e uma precisão limitada a mínimos locais, além de sofrerem com uma lenta taxa de convergência (cycle-skipping). Portanto, neste trabalho, foi desenvolvido um algoritmo de otimização híbrido de duas fases baseado em algoritmos de otimização livre de derivadas (Derivative Free Optimization - DFO). Na primeira fase, utiliza-se a minimização global e a técnica de agrupamento, enquanto na segunda fase é adotada a minimização local. Na Fase 1, foram utilizados o algoritmo de otimização por enxame de partículas (Particle Swarm Optmization - PSO) e o K-means. Na Fase 2, foi utilizado o Simplex Adaptativo de Nelder-Mead (Adaptive Nelder-Mead Simplex - ANMS). O novo algoritmo híbrido foi denominado de PSO-Kmeans-ANMS, no qual o K-means é responsável por dividir o enxame de partículas em dois clusters em cada iteração. Essa estratégia visa equilibrar automaticamente os mecanismos de exploração e explotação do espaço de busca de parâmetros, permitindo encontrar soluções mais precisas e, consequentemente, melhorar a convergência. O algoritmo híbrido proposto foi validado no conjunto de 12 funções benchmark e, em seguida, aplicado ao problema FWI 1D. Os resultados do PSO-Kmeans-ANMS foram comparados com os obtidos pelos algoritmos PSO clássico, PSO modificado e ANMS. As métricas utilizadas foram o tempo médio de execução e a taxa de sucesso, que aceitou erros de até ±4% da solução ótima. Em todos os experimentos de validação e na aplicação da FWI, o algoritmo PSO-Kmeans-ANMS apresentou desempenho satisfatório, fornencendo resultados precisos e confiáveis, o que comprova sua robustez e eficiência computacional. Além disso, a aplicação desse algoritmo híbrido na FWI proporcionou uma redução significativa no custo computacional, representando assim um resultado importante e promissor para a área da sísmica.
id UFRN_25d850fa9a127886fd78b7a6e66337b4
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/55120
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Nascimento, Rutinaldo Aguiarhttps://orcid.org/0000-0001-8356-4458http://lattes.cnpq.br/7136533496688573https://orcid.org/0000-0001-8462-4280http://lattes.cnpq.br/3061734732654188Barroca Neto, Álvarohttps://orcid.org/0000-0003-3465-7134http://lattes.cnpq.br/2194067631173871Corso, Gilbertohttps://orcid.org/0000-0003-1748-4040http://lattes.cnpq.br/0274040885278760Nascimento, Hugo Alexandre Dantas dohttp://lattes.cnpq.br/2920005922426876Henriques, Marcos Vinícius Cândidohttps://orcid.org/0000-0002-4411-3635http://lattes.cnpq.br/7414109374510547Araújo, João Medeiros de2023-10-30T21:50:14Z2023-10-30T21:50:14Z2023-05-20NASCIMENTO, Rutinaldo Aguiar. Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D. 2023. 129 f. Orientador: Prof. Dr. João Medeiros de Araújo.Tese (doutorado em Ciência e Engenharia de petróleo) - Universidade Federal do Rio Grande do Norte, Centro de Tecnologia, Centro de Ciências Exatas e da Terra, Programa de Pós-graduação em Ciência e Engenharia de Petróleo. Natal, RN, 2023.https://repositorio.ufrn.br/handle/123456789/55120A Inversão Completa da Forma da Onda (Full Waveform Inversion - FWI) é formulada como um problema de otimização não linear, que tradicionalmente utiliza métodos de minimização local baseados em derivadas para encontrar o campo escalar de propriedades físicas da subsuperfície que melhor represente os dados sísmicos de campo. No entanto, esses métodos possuem um alto custo computacional e uma precisão limitada a mínimos locais, além de sofrerem com uma lenta taxa de convergência (cycle-skipping). Portanto, neste trabalho, foi desenvolvido um algoritmo de otimização híbrido de duas fases baseado em algoritmos de otimização livre de derivadas (Derivative Free Optimization - DFO). Na primeira fase, utiliza-se a minimização global e a técnica de agrupamento, enquanto na segunda fase é adotada a minimização local. Na Fase 1, foram utilizados o algoritmo de otimização por enxame de partículas (Particle Swarm Optmization - PSO) e o K-means. Na Fase 2, foi utilizado o Simplex Adaptativo de Nelder-Mead (Adaptive Nelder-Mead Simplex - ANMS). O novo algoritmo híbrido foi denominado de PSO-Kmeans-ANMS, no qual o K-means é responsável por dividir o enxame de partículas em dois clusters em cada iteração. Essa estratégia visa equilibrar automaticamente os mecanismos de exploração e explotação do espaço de busca de parâmetros, permitindo encontrar soluções mais precisas e, consequentemente, melhorar a convergência. O algoritmo híbrido proposto foi validado no conjunto de 12 funções benchmark e, em seguida, aplicado ao problema FWI 1D. Os resultados do PSO-Kmeans-ANMS foram comparados com os obtidos pelos algoritmos PSO clássico, PSO modificado e ANMS. As métricas utilizadas foram o tempo médio de execução e a taxa de sucesso, que aceitou erros de até ±4% da solução ótima. Em todos os experimentos de validação e na aplicação da FWI, o algoritmo PSO-Kmeans-ANMS apresentou desempenho satisfatório, fornencendo resultados precisos e confiáveis, o que comprova sua robustez e eficiência computacional. Além disso, a aplicação desse algoritmo híbrido na FWI proporcionou uma redução significativa no custo computacional, representando assim um resultado importante e promissor para a área da sísmica. A Inversão Completa da Forma da Onda (Full Waveform Inversion - FWI) é formulada como um problema de otimização não linear, que tradicionalmente utiliza métodos de minimização local baseados em derivadas para encontrar o campo escalar de propriedades físicas da subsuperfície que melhor represente os dados sísmicos de campo. No entanto, esses métodos possuem um alto custo computacional e uma precisão limitada a mínimos locais, além de sofrerem com uma lenta taxa de convergência (cycle-skipping). Portanto, neste trabalho, foi desenvolvido um algoritmo de otimização híbrido de duas fases baseado em algoritmos de otimização livre de derivadas (Derivative Free Optimization - DFO). Na primeira fase, utiliza-se a minimização global e a técnica de agrupamento, enquanto na segunda fase é adotada a minimização local. Na Fase 1, foram utilizados o algoritmo de otimização por enxame de partículas (Particle Swarm Optmization - PSO) e o K-means. Na Fase 2, foi utilizado o Simplex Adaptativo de Nelder-Mead (Adaptive Nelder-Mead Simplex - ANMS). O novo algoritmo híbrido foi denominado de PSO-Kmeans-ANMS, no qual o K-means é responsável por dividir o enxame de partículas em dois clusters em cada iteração. Essa estratégia visa equilibrar automaticamente os mecanismos de exploração e explotação do espaço de busca de parâmetros, permitindo encontrar soluções mais precisas e, consequentemente, melhorar a convergência. O algoritmo híbrido proposto foi validado no conjunto de 12 funções benchmark e, em seguida, aplicado ao problema FWI 1D. Os resultados do PSO-Kmeans-ANMS foram comparados com os obtidos pelos algoritmos PSO clássico, PSO modificado e ANMS. As métricas utilizadas foram o tempo médio de execução e a taxa de sucesso, que aceitou erros de até ±4% da solução ótima. Em todos os experimentos de validação e na aplicação da FWI, o algoritmo PSO-Kmeans-ANMS apresentou desempenho satisfatório, fornencendo resultados precisos e confiáveis, o que comprova sua robustez e eficiência computacional. Além disso, a aplicação desse algoritmo híbrido na FWI proporcionou uma redução significativa no custo computacional, representando assim um resultado importante e promissor para a área da sísmica.Full Waveform Inversion (FWI) is formulated as a nonlinear optimization problem, which traditionally utilizes derivative-based local minimization methods to find the scalar field of physical properties of the subsurface that best represents the field seismic data. However, these methods have a high computational cost and a limited accuracy to local minima, in addition to suffering from a slow convergence rate (Cycle Skipping). Therefore, in this work, a two-phase hybrid optimization algorithm based on Derivative-Free Optimization (DFO) algorithms was developed. In the first phase, global minimization and the clustering technique are used, while in the second phase, local minimization is adopted. In phase 1, Particle Swarm Optimization (PSO) and K-means clustering algorithms were used. In phase2, the Adaptive Nelder-Mead Simplex (ANMS) was used. The new hybrid algorithm was named PSO-Kmeans-ANMS, in which the K-means is responsible for dividing the swarm of particles into two clusters at each iteration. This strategy aims to automatically balance the exploration and exploitation mechanisms of the parameter search space, allowing for finding more accurate solutions and, consequently, improving convergence. The proposed hybrid algorithm was validated on the set of 12 benchmark functions and then applied to the 1D FWI problem. The results of the PSO-Kmeans-ANMS were compared with those obtained by the classic PSO, modified PSO, and ANMS algorithms. The metrics used were the average execution time and the success rate, which accepted errors of up to ±4% of the optimal solution. In all validation experiments and in the application of the FWI, the PSO-Kmeans- ANMS algorithm showed satisfactory performance, providing precise and reliable results, which proves its robustness and computational efficiency. In addition, the application of this hybrid algorithm in the FWI provided a significant reduction in the computational cost, thus representing an important and promising result for the seismic areaCAPESUniversidade Federal do Rio Grande do NortePrograma de Pós-graduação em Ciência e Engenharia de PetróleoUFRNBrasilCNPQ::CIENCIAS EXATAS E DA TERRAInversão completa da forma da ondaOtimização livre de derivadasCusto computacional.Engenharia de petróleoAlgoritmo bioinspiradoOtimização não linearCusto computacionalFull waveform inversionHybrid optimizationDerivative free optimizationBio- inspired algorithmNonlinear optimizationComputational costUma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1Dinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALNovaAbordagemOtimizacao_Nascimento_2023application/pdf4802530https://repositorio.ufrn.br/bitstream/123456789/55120/1/NovaAbordagemOtimizacao_Nascimento_2023a542ce472d88f60ba9e0dc4d4e910856MD51123456789/551202023-10-30 18:51:42.873oai:https://repositorio.ufrn.br:123456789/55120Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-10-30T21:51:42Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
title Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
spellingShingle Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
Nascimento, Rutinaldo Aguiar
CNPQ::CIENCIAS EXATAS E DA TERRA
Inversão completa da forma da onda
Otimização livre de derivadas
Custo computacional.
Engenharia de petróleo
Algoritmo bioinspirado
Otimização não linear
Custo computacional
Full waveform inversion
Hybrid optimization
Derivative free optimization
Bio- inspired algorithm
Nonlinear optimization
Computational cost
title_short Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
title_full Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
title_fullStr Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
title_full_unstemmed Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
title_sort Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D
author Nascimento, Rutinaldo Aguiar
author_facet Nascimento, Rutinaldo Aguiar
author_role author
dc.contributor.authorID.pt_BR.fl_str_mv https://orcid.org/0000-0001-8356-4458
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7136533496688573
dc.contributor.advisorID.pt_BR.fl_str_mv https://orcid.org/0000-0001-8462-4280
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3061734732654188
dc.contributor.referees1.none.fl_str_mv Corso, Gilberto
dc.contributor.referees1ID.pt_BR.fl_str_mv https://orcid.org/0000-0003-1748-4040
dc.contributor.referees1Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0274040885278760
dc.contributor.referees2.none.fl_str_mv Nascimento, Hugo Alexandre Dantas do
dc.contributor.referees2Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2920005922426876
dc.contributor.referees3.none.fl_str_mv Henriques, Marcos Vinícius Cândido
dc.contributor.referees3ID.pt_BR.fl_str_mv https://orcid.org/0000-0002-4411-3635
dc.contributor.referees3Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7414109374510547
dc.contributor.author.fl_str_mv Nascimento, Rutinaldo Aguiar
dc.contributor.advisor-co1.fl_str_mv Barroca Neto, Álvaro
dc.contributor.advisor-co1ID.fl_str_mv https://orcid.org/0000-0003-3465-7134
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2194067631173871
dc.contributor.advisor1.fl_str_mv Araújo, João Medeiros de
contributor_str_mv Barroca Neto, Álvaro
Araújo, João Medeiros de
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA
topic CNPQ::CIENCIAS EXATAS E DA TERRA
Inversão completa da forma da onda
Otimização livre de derivadas
Custo computacional.
Engenharia de petróleo
Algoritmo bioinspirado
Otimização não linear
Custo computacional
Full waveform inversion
Hybrid optimization
Derivative free optimization
Bio- inspired algorithm
Nonlinear optimization
Computational cost
dc.subject.por.fl_str_mv Inversão completa da forma da onda
Otimização livre de derivadas
Custo computacional.
Engenharia de petróleo
Algoritmo bioinspirado
Otimização não linear
Custo computacional
Full waveform inversion
Hybrid optimization
Derivative free optimization
Bio- inspired algorithm
Nonlinear optimization
Computational cost
description A Inversão Completa da Forma da Onda (Full Waveform Inversion - FWI) é formulada como um problema de otimização não linear, que tradicionalmente utiliza métodos de minimização local baseados em derivadas para encontrar o campo escalar de propriedades físicas da subsuperfície que melhor represente os dados sísmicos de campo. No entanto, esses métodos possuem um alto custo computacional e uma precisão limitada a mínimos locais, além de sofrerem com uma lenta taxa de convergência (cycle-skipping). Portanto, neste trabalho, foi desenvolvido um algoritmo de otimização híbrido de duas fases baseado em algoritmos de otimização livre de derivadas (Derivative Free Optimization - DFO). Na primeira fase, utiliza-se a minimização global e a técnica de agrupamento, enquanto na segunda fase é adotada a minimização local. Na Fase 1, foram utilizados o algoritmo de otimização por enxame de partículas (Particle Swarm Optmization - PSO) e o K-means. Na Fase 2, foi utilizado o Simplex Adaptativo de Nelder-Mead (Adaptive Nelder-Mead Simplex - ANMS). O novo algoritmo híbrido foi denominado de PSO-Kmeans-ANMS, no qual o K-means é responsável por dividir o enxame de partículas em dois clusters em cada iteração. Essa estratégia visa equilibrar automaticamente os mecanismos de exploração e explotação do espaço de busca de parâmetros, permitindo encontrar soluções mais precisas e, consequentemente, melhorar a convergência. O algoritmo híbrido proposto foi validado no conjunto de 12 funções benchmark e, em seguida, aplicado ao problema FWI 1D. Os resultados do PSO-Kmeans-ANMS foram comparados com os obtidos pelos algoritmos PSO clássico, PSO modificado e ANMS. As métricas utilizadas foram o tempo médio de execução e a taxa de sucesso, que aceitou erros de até ±4% da solução ótima. Em todos os experimentos de validação e na aplicação da FWI, o algoritmo PSO-Kmeans-ANMS apresentou desempenho satisfatório, fornencendo resultados precisos e confiáveis, o que comprova sua robustez e eficiência computacional. Além disso, a aplicação desse algoritmo híbrido na FWI proporcionou uma redução significativa no custo computacional, representando assim um resultado importante e promissor para a área da sísmica. A Inversão Completa da Forma da Onda (Full Waveform Inversion - FWI) é formulada como um problema de otimização não linear, que tradicionalmente utiliza métodos de minimização local baseados em derivadas para encontrar o campo escalar de propriedades físicas da subsuperfície que melhor represente os dados sísmicos de campo. No entanto, esses métodos possuem um alto custo computacional e uma precisão limitada a mínimos locais, além de sofrerem com uma lenta taxa de convergência (cycle-skipping). Portanto, neste trabalho, foi desenvolvido um algoritmo de otimização híbrido de duas fases baseado em algoritmos de otimização livre de derivadas (Derivative Free Optimization - DFO). Na primeira fase, utiliza-se a minimização global e a técnica de agrupamento, enquanto na segunda fase é adotada a minimização local. Na Fase 1, foram utilizados o algoritmo de otimização por enxame de partículas (Particle Swarm Optmization - PSO) e o K-means. Na Fase 2, foi utilizado o Simplex Adaptativo de Nelder-Mead (Adaptive Nelder-Mead Simplex - ANMS). O novo algoritmo híbrido foi denominado de PSO-Kmeans-ANMS, no qual o K-means é responsável por dividir o enxame de partículas em dois clusters em cada iteração. Essa estratégia visa equilibrar automaticamente os mecanismos de exploração e explotação do espaço de busca de parâmetros, permitindo encontrar soluções mais precisas e, consequentemente, melhorar a convergência. O algoritmo híbrido proposto foi validado no conjunto de 12 funções benchmark e, em seguida, aplicado ao problema FWI 1D. Os resultados do PSO-Kmeans-ANMS foram comparados com os obtidos pelos algoritmos PSO clássico, PSO modificado e ANMS. As métricas utilizadas foram o tempo médio de execução e a taxa de sucesso, que aceitou erros de até ±4% da solução ótima. Em todos os experimentos de validação e na aplicação da FWI, o algoritmo PSO-Kmeans-ANMS apresentou desempenho satisfatório, fornencendo resultados precisos e confiáveis, o que comprova sua robustez e eficiência computacional. Além disso, a aplicação desse algoritmo híbrido na FWI proporcionou uma redução significativa no custo computacional, representando assim um resultado importante e promissor para a área da sísmica.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-10-30T21:50:14Z
dc.date.available.fl_str_mv 2023-10-30T21:50:14Z
dc.date.issued.fl_str_mv 2023-05-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NASCIMENTO, Rutinaldo Aguiar. Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D. 2023. 129 f. Orientador: Prof. Dr. João Medeiros de Araújo.Tese (doutorado em Ciência e Engenharia de petróleo) - Universidade Federal do Rio Grande do Norte, Centro de Tecnologia, Centro de Ciências Exatas e da Terra, Programa de Pós-graduação em Ciência e Engenharia de Petróleo. Natal, RN, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/55120
identifier_str_mv NASCIMENTO, Rutinaldo Aguiar. Uma nova abordagem de otimização híbrida usando os algoritmos PSO, Nelder-Mead Simplex e o de clusterização K-means para inversão completa da forma da onda 1D. 2023. 129 f. Orientador: Prof. Dr. João Medeiros de Araújo.Tese (doutorado em Ciência e Engenharia de petróleo) - Universidade Federal do Rio Grande do Norte, Centro de Tecnologia, Centro de Ciências Exatas e da Terra, Programa de Pós-graduação em Ciência e Engenharia de Petróleo. Natal, RN, 2023.
url https://repositorio.ufrn.br/handle/123456789/55120
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência e Engenharia de Petróleo
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/55120/1/NovaAbordagemOtimizacao_Nascimento_2023
bitstream.checksum.fl_str_mv a542ce472d88f60ba9e0dc4d4e910856
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832785030905856