Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/48758 |
Resumo: | Este trabalho teve como objetivo associar dados de reflectância de fotografias aéreas RGB capturadas por drone e compara-los com valores de volume de madeira por meio de dois índices de vegetação (IRAV e ITV). O estudo foi conduzido em Macaíba-RN no plantio experimental de eucalipto que integra o programa de pesquisa TECHS-UFRN. As fotografias capturadas foram processadas utilizando o software QGIS, gerando um mapa para cada índice avaliado. Para comparação com os valores de volume das árvores de cada talhão, foi gerado um valor do índice da média dos pixels no raio de 1,5 m da cada árvore que, posteriormente ao voo, foram abatidas para cubagem. A análise de correlação foi feita por regressão linear multivariavel, sendo o valor do índice a variável dependente, e o valor do volume a variável independente. O índice IRAV apresentou a maior correlação com os valores de volume das árvores, respondendo melhor estatisticamente do que o índice ITV, principalmente o talhão C3 (E. grandis x E. camaldulensis), foi o que apresentou a melhor correlação com volume (m³), com valor de r = 0,60. O índice ITV apresentou menor correlação com o volume das árvores, se obtendo uma diferença significativa entre os dois índices avaliados. Foi realizada análise de regressão não linear onde foram escolhidos por comparação via AIC, os modelos que de regressão que melhor representaram os índices em cada genótipo. As regressões escolhidas foram aplicadas ao mapa índice para comparação com os valores de produção volumétrica (m³/há) por meio do processo de segmentação. Os dois índices mostraram relação positiva com os valores estimados pelo método direto mostrando a maior produção volumétrica nos espaçamentos mais adensados. Os resultados obtidos com este estudo mostram o potencial da utilização dos drones ferramenta de monitoramento para estimativa da produtividade florestal, por meio de analise de regressão de índices de vegetação obtido por aerofotos. |
id |
UFRN_2a7aac643ec39a73377e10f7880ee18b |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/48758 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Araujo, Bruna De CarloCanto, Juliana Lorensi doDomingues, Getúlio FonsecaSouza, Flavo Elano Soares de2022-07-27T12:13:23Z2022-07-27T12:13:23Z2022-07-22ARAUJO, Bruna De Carlo. Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e IVT (Índice Triangular Verde) na estimativa de volume de Eucalyptus. 2022. 50 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Florestal) - Unidade Acadêmica Especializada em Ciências Agrárias, Universidade Federal do Rio Grande do Norte, Macaíba, 2022.https://repositorio.ufrn.br/handle/123456789/48758Este trabalho teve como objetivo associar dados de reflectância de fotografias aéreas RGB capturadas por drone e compara-los com valores de volume de madeira por meio de dois índices de vegetação (IRAV e ITV). O estudo foi conduzido em Macaíba-RN no plantio experimental de eucalipto que integra o programa de pesquisa TECHS-UFRN. As fotografias capturadas foram processadas utilizando o software QGIS, gerando um mapa para cada índice avaliado. Para comparação com os valores de volume das árvores de cada talhão, foi gerado um valor do índice da média dos pixels no raio de 1,5 m da cada árvore que, posteriormente ao voo, foram abatidas para cubagem. A análise de correlação foi feita por regressão linear multivariavel, sendo o valor do índice a variável dependente, e o valor do volume a variável independente. O índice IRAV apresentou a maior correlação com os valores de volume das árvores, respondendo melhor estatisticamente do que o índice ITV, principalmente o talhão C3 (E. grandis x E. camaldulensis), foi o que apresentou a melhor correlação com volume (m³), com valor de r = 0,60. O índice ITV apresentou menor correlação com o volume das árvores, se obtendo uma diferença significativa entre os dois índices avaliados. Foi realizada análise de regressão não linear onde foram escolhidos por comparação via AIC, os modelos que de regressão que melhor representaram os índices em cada genótipo. As regressões escolhidas foram aplicadas ao mapa índice para comparação com os valores de produção volumétrica (m³/há) por meio do processo de segmentação. Os dois índices mostraram relação positiva com os valores estimados pelo método direto mostrando a maior produção volumétrica nos espaçamentos mais adensados. Os resultados obtidos com este estudo mostram o potencial da utilização dos drones ferramenta de monitoramento para estimativa da produtividade florestal, por meio de analise de regressão de índices de vegetação obtido por aerofotos.This work aimed to associate reflectance data of RGB aerial photographs captured by drone and to comcant them with wood volume values using two vegetation indices (IRAV and ITV). The study was conducted in Macaíba-RN in the experimental eucalyptus plantation that is part of the TECHS-UFRN research program. The captured photographs were processed using the QGIS software, generating a map for each index evaluated. To compare with the volume values of the trees of each plot, a value of the index of the average of the pixels in the radius of 1.5 m of each tree was generated, which, after the flight, were felled for cubation. The correlation analysis was performed by multivariable linear regression, with the index value being the dependent variable, and the volume value being the independent variable. The IRAV index showed the highest correlation with the volume values of the trees, accounting better statistically than the ITV index, especially the C3 plot (E. grandis x E. camaldulensis), was the one that presented the best correlation with volume (m³), with a value of r = 0.60. The ITV index showed lower correlation with the volume of the trees, obtaining a significant difference between the two indexes evaluated. Nonlinear regression analysis was performed where regression models that best represented the indices in each genotype were chosen by comparison by comparison via AIC. The chosen regressions were applied to the index map for comparison with the volumetric production values (m³/ago) through the segmentation process. The two indices showed a positive relationship with the values estimated by the direct method, showing the highest volumetric production in the most densespacings. The results obtained with this study show the potential of the use of drones monitoring tool to estimate forest productivity, through regression analysis of vegetation indices obtained by aerophotos.Universidade Federal do Rio Grande do NorteEngenharia FlorestalUFRNBrasilUnidade Acadêmica Especializada em Ciências AgráriasÍndices de vegetação. Estimativa de volume. Silvicultura de precisão.Vegetation indexes. Volume estimation. Precision forestry.Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus.Drones as a forest management tool: performance of the IRAV (Index Resistant to the Atmosphere in the Visible Region) and ITV (Green Triangular Index) indexes in the estimate of Eucalyptus volume.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessORIGINALFerramentaDeGestãoFlorestal_Araujo_2022.pdfFerramentaDeGestãoFlorestal_Araujo_2022.pdfDRONES COMO FERRAMENTA DE GESTÃO FLORESTAL: Desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus.application/pdf3085919https://repositorio.ufrn.br/bitstream/123456789/48758/1/FerramentaDeGest%c3%a3oFlorestal_Araujo_2022.pdf11dfb977fa740fe485f5b5d9d376bdc5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/48758/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52123456789/487582022-09-13 08:35:12.739oai:https://repositorio.ufrn.br:123456789/48758Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-09-13T11:35:12Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
dc.title.alternative.pt_BR.fl_str_mv |
Drones as a forest management tool: performance of the IRAV (Index Resistant to the Atmosphere in the Visible Region) and ITV (Green Triangular Index) indexes in the estimate of Eucalyptus volume. |
title |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
spellingShingle |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. Araujo, Bruna De Carlo Índices de vegetação. Estimativa de volume. Silvicultura de precisão. Vegetation indexes. Volume estimation. Precision forestry. |
title_short |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
title_full |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
title_fullStr |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
title_full_unstemmed |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
title_sort |
Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e ITV (Índice Triangular Verde) na estimativa de volume de Eucalyptus. |
author |
Araujo, Bruna De Carlo |
author_facet |
Araujo, Bruna De Carlo |
author_role |
author |
dc.contributor.referees2.none.fl_str_mv |
Canto, Juliana Lorensi do |
dc.contributor.referees3.none.fl_str_mv |
Domingues, Getúlio Fonseca |
dc.contributor.author.fl_str_mv |
Araujo, Bruna De Carlo |
dc.contributor.advisor1.fl_str_mv |
Souza, Flavo Elano Soares de |
contributor_str_mv |
Souza, Flavo Elano Soares de |
dc.subject.por.fl_str_mv |
Índices de vegetação. Estimativa de volume. Silvicultura de precisão. Vegetation indexes. Volume estimation. Precision forestry. |
topic |
Índices de vegetação. Estimativa de volume. Silvicultura de precisão. Vegetation indexes. Volume estimation. Precision forestry. |
description |
Este trabalho teve como objetivo associar dados de reflectância de fotografias aéreas RGB capturadas por drone e compara-los com valores de volume de madeira por meio de dois índices de vegetação (IRAV e ITV). O estudo foi conduzido em Macaíba-RN no plantio experimental de eucalipto que integra o programa de pesquisa TECHS-UFRN. As fotografias capturadas foram processadas utilizando o software QGIS, gerando um mapa para cada índice avaliado. Para comparação com os valores de volume das árvores de cada talhão, foi gerado um valor do índice da média dos pixels no raio de 1,5 m da cada árvore que, posteriormente ao voo, foram abatidas para cubagem. A análise de correlação foi feita por regressão linear multivariavel, sendo o valor do índice a variável dependente, e o valor do volume a variável independente. O índice IRAV apresentou a maior correlação com os valores de volume das árvores, respondendo melhor estatisticamente do que o índice ITV, principalmente o talhão C3 (E. grandis x E. camaldulensis), foi o que apresentou a melhor correlação com volume (m³), com valor de r = 0,60. O índice ITV apresentou menor correlação com o volume das árvores, se obtendo uma diferença significativa entre os dois índices avaliados. Foi realizada análise de regressão não linear onde foram escolhidos por comparação via AIC, os modelos que de regressão que melhor representaram os índices em cada genótipo. As regressões escolhidas foram aplicadas ao mapa índice para comparação com os valores de produção volumétrica (m³/há) por meio do processo de segmentação. Os dois índices mostraram relação positiva com os valores estimados pelo método direto mostrando a maior produção volumétrica nos espaçamentos mais adensados. Os resultados obtidos com este estudo mostram o potencial da utilização dos drones ferramenta de monitoramento para estimativa da produtividade florestal, por meio de analise de regressão de índices de vegetação obtido por aerofotos. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-27T12:13:23Z |
dc.date.available.fl_str_mv |
2022-07-27T12:13:23Z |
dc.date.issued.fl_str_mv |
2022-07-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ARAUJO, Bruna De Carlo. Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e IVT (Índice Triangular Verde) na estimativa de volume de Eucalyptus. 2022. 50 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Florestal) - Unidade Acadêmica Especializada em Ciências Agrárias, Universidade Federal do Rio Grande do Norte, Macaíba, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/48758 |
identifier_str_mv |
ARAUJO, Bruna De Carlo. Drones como ferramenta de gestão florestal: desempenho dos índices IRAV (Índice Resistente à Atmosfera na Região Visível) e IVT (Índice Triangular Verde) na estimativa de volume de Eucalyptus. 2022. 50 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Florestal) - Unidade Acadêmica Especializada em Ciências Agrárias, Universidade Federal do Rio Grande do Norte, Macaíba, 2022. |
url |
https://repositorio.ufrn.br/handle/123456789/48758 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.program.fl_str_mv |
Engenharia Florestal |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Unidade Acadêmica Especializada em Ciências Agrárias |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/48758/1/FerramentaDeGest%c3%a3oFlorestal_Araujo_2022.pdf https://repositorio.ufrn.br/bitstream/123456789/48758/2/license.txt |
bitstream.checksum.fl_str_mv |
11dfb977fa740fe485f5b5d9d376bdc5 e9597aa2854d128fd968be5edc8a28d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832987597963264 |