Novel formulations and modeling enhancements for the dynamic berth allocation problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/31053 |
Resumo: | This paper addresses the well-known dynamic berth allocation problem (DBAP), which finds numerous applications at container terminals aiming to allocate and schedule incoming container vessels into berthing positions along the quay. Due to its impact on ports’ performance, having efficient DBAP formulations is of great importance, especially for determining optimal schedules in quick time as well as aiding managers and developers in the assessment of solution strategies and approximate approaches. In this work, we propose two novel formulations, a time-indexed formulation and an arc-flow one, to efficiently tackle the DBAP. Additionally, to improve computational performance, we propose problem-based modeling enhancements and a variable-fixing procedure that allows to discard some variables by considering their reduced costs. By means of these contributions, we improve the models’ performance for those instances where the optimal solutions were already known, and we solve to optimality for the first time other instances from the literature |
id |
UFRN_40ecad808b77c9ab8211fa9b7ddeab1d |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/31053 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Kramer, Arthur Harry Frederico RibeiroLalla-Ruiz, EduardoIori, ManuelVoß, Stefan2020-12-17T21:41:56Z2020-12-17T21:41:56Z2019KRAMER, Arthur; LALLA-RUIZ, Eduardo; IORI, Manuel; VOß, Stefan. Novel formulations and modeling enhancements for the dynamic berth allocation problem. European Journal of Operational Research, p. 170-185, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0377221719302942?via%3Dihub Acesso em: 10 dez. 2020. https://doi.org/10.1016/j.ejor.2019.03.036.0377-2217https://repositorio.ufrn.br/handle/123456789/3105310.1016/j.ejor.2019.03.036ElsevierOR in maritime industryDynamic berth allocation problemNovel formulationsModeling enhancementsNovel formulations and modeling enhancements for the dynamic berth allocation probleminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleThis paper addresses the well-known dynamic berth allocation problem (DBAP), which finds numerous applications at container terminals aiming to allocate and schedule incoming container vessels into berthing positions along the quay. Due to its impact on ports’ performance, having efficient DBAP formulations is of great importance, especially for determining optimal schedules in quick time as well as aiding managers and developers in the assessment of solution strategies and approximate approaches. In this work, we propose two novel formulations, a time-indexed formulation and an arc-flow one, to efficiently tackle the DBAP. Additionally, to improve computational performance, we propose problem-based modeling enhancements and a variable-fixing procedure that allows to discard some variables by considering their reduced costs. By means of these contributions, we improve the models’ performance for those instances where the optimal solutions were already known, and we solve to optimality for the first time other instances from the literatureengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/31053/2/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/31053/3/license.txte9597aa2854d128fd968be5edc8a28d9MD53TEXTNovelFormulationsAndModeling_Kramer_2019.pdf.txtNovelFormulationsAndModeling_Kramer_2019.pdf.txtExtracted texttext/plain94057https://repositorio.ufrn.br/bitstream/123456789/31053/4/NovelFormulationsAndModeling_Kramer_2019.pdf.txtea38e048f34250cca18429ceeacd2d26MD54THUMBNAILNovelFormulationsAndModeling_Kramer_2019.pdf.jpgNovelFormulationsAndModeling_Kramer_2019.pdf.jpgGenerated Thumbnailimage/jpeg1744https://repositorio.ufrn.br/bitstream/123456789/31053/5/NovelFormulationsAndModeling_Kramer_2019.pdf.jpg5f8ae2cff45f5ebcf9c88446d74004c2MD55123456789/310532023-02-03 19:09:07.82oai:https://repositorio.ufrn.br:123456789/31053Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-02-03T22:09:07Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
title |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
spellingShingle |
Novel formulations and modeling enhancements for the dynamic berth allocation problem Kramer, Arthur Harry Frederico Ribeiro OR in maritime industry Dynamic berth allocation problem Novel formulations Modeling enhancements |
title_short |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
title_full |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
title_fullStr |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
title_full_unstemmed |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
title_sort |
Novel formulations and modeling enhancements for the dynamic berth allocation problem |
author |
Kramer, Arthur Harry Frederico Ribeiro |
author_facet |
Kramer, Arthur Harry Frederico Ribeiro Lalla-Ruiz, Eduardo Iori, Manuel Voß, Stefan |
author_role |
author |
author2 |
Lalla-Ruiz, Eduardo Iori, Manuel Voß, Stefan |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Kramer, Arthur Harry Frederico Ribeiro Lalla-Ruiz, Eduardo Iori, Manuel Voß, Stefan |
dc.subject.por.fl_str_mv |
OR in maritime industry Dynamic berth allocation problem Novel formulations Modeling enhancements |
topic |
OR in maritime industry Dynamic berth allocation problem Novel formulations Modeling enhancements |
description |
This paper addresses the well-known dynamic berth allocation problem (DBAP), which finds numerous applications at container terminals aiming to allocate and schedule incoming container vessels into berthing positions along the quay. Due to its impact on ports’ performance, having efficient DBAP formulations is of great importance, especially for determining optimal schedules in quick time as well as aiding managers and developers in the assessment of solution strategies and approximate approaches. In this work, we propose two novel formulations, a time-indexed formulation and an arc-flow one, to efficiently tackle the DBAP. Additionally, to improve computational performance, we propose problem-based modeling enhancements and a variable-fixing procedure that allows to discard some variables by considering their reduced costs. By means of these contributions, we improve the models’ performance for those instances where the optimal solutions were already known, and we solve to optimality for the first time other instances from the literature |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-12-17T21:41:56Z |
dc.date.available.fl_str_mv |
2020-12-17T21:41:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
KRAMER, Arthur; LALLA-RUIZ, Eduardo; IORI, Manuel; VOß, Stefan. Novel formulations and modeling enhancements for the dynamic berth allocation problem. European Journal of Operational Research, p. 170-185, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0377221719302942?via%3Dihub Acesso em: 10 dez. 2020. https://doi.org/10.1016/j.ejor.2019.03.036. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/31053 |
dc.identifier.issn.none.fl_str_mv |
0377-2217 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ejor.2019.03.036 |
identifier_str_mv |
KRAMER, Arthur; LALLA-RUIZ, Eduardo; IORI, Manuel; VOß, Stefan. Novel formulations and modeling enhancements for the dynamic berth allocation problem. European Journal of Operational Research, p. 170-185, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0377221719302942?via%3Dihub Acesso em: 10 dez. 2020. https://doi.org/10.1016/j.ejor.2019.03.036. 0377-2217 10.1016/j.ejor.2019.03.036 |
url |
https://repositorio.ufrn.br/handle/123456789/31053 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/31053/2/license_rdf https://repositorio.ufrn.br/bitstream/123456789/31053/3/license.txt https://repositorio.ufrn.br/bitstream/123456789/31053/4/NovelFormulationsAndModeling_Kramer_2019.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/31053/5/NovelFormulationsAndModeling_Kramer_2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
4d2950bda3d176f570a9f8b328dfbbef e9597aa2854d128fd968be5edc8a28d9 ea38e048f34250cca18429ceeacd2d26 5f8ae2cff45f5ebcf9c88446d74004c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833020267397120 |