Quantifying entropy using recurrence matrix microstates

Detalhes bibliográficos
Autor(a) principal: Corso, Gilberto
Data de Publicação: 2018
Outros Autores: Prado, Thiago de Lima, Lima, Gustavo Zampier dos Santos, Kurths, Jürgen, Lopes, Sérgio Roberto
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/30826
Resumo: We conceive a new recurrence quantifier for time series based on the concept of information entropy, in which the probabilities are associated with the presence of microstates defined on the recurrence matrix as small binary submatrices. The new methodology to compute the entropy of a time series has advantages compared to the traditional entropies defined in the literature, namely, a good correlation with the maximum Lyapunov exponent of the system and a weak dependence on the vicinity threshold parameter. Furthermore, the new method works adequately even for small segments of data, bringing consistent results for short and long time series. In a case where long time series are available, the new methodology can be employed to obtain high precision results since it does not demand large computational times related to the analysis of the entire time series or recurrence matrices, as is the case of other traditional entropy quantifiers. The method is applied to discrete and continuous systems
id UFRN_414cbc27f33d6e94b7f79e20d85f8435
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/30826
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Corso, GilbertoPrado, Thiago de LimaLima, Gustavo Zampier dos SantosKurths, JürgenLopes, Sérgio Roberto2020-12-04T19:49:32Z2020-12-04T19:49:32Z2018-08-09CORSO, Gilberto; PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; KURTHS, Jürgen; LOPES, Sergio Roberto. Quantifying entropy using recurrence matrix microstates. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 083108-083108, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5042026. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5042026.1054-15001089-7682https://repositorio.ufrn.br/handle/123456789/3082610.1063/1.5042026American Institute of PhysicsLyapunov exponentLogistic mapData visualizationLorenz systemTime series analysisSignal processingPhase space methodsEntropyQuantifying entropy using recurrence matrix microstatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleWe conceive a new recurrence quantifier for time series based on the concept of information entropy, in which the probabilities are associated with the presence of microstates defined on the recurrence matrix as small binary submatrices. The new methodology to compute the entropy of a time series has advantages compared to the traditional entropies defined in the literature, namely, a good correlation with the maximum Lyapunov exponent of the system and a weak dependence on the vicinity threshold parameter. Furthermore, the new method works adequately even for small segments of data, bringing consistent results for short and long time series. In a case where long time series are available, the new methodology can be employed to obtain high precision results since it does not demand large computational times related to the analysis of the entire time series or recurrence matrices, as is the case of other traditional entropy quantifiers. The method is applied to discrete and continuous systemsporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30826/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52ORIGINALQuantifyingEntropyUsing_Lima_2018.pdfQuantifyingEntropyUsing_Lima_2018.pdfArtigoapplication/pdf2719570https://repositorio.ufrn.br/bitstream/123456789/30826/1/QuantifyingEntropyUsing_Lima_2018.pdfa394ae20818555e9ab3b4fc375345c80MD51TEXTQuantifyingEntropyUsing_LIMA_2018.pdf.txtQuantifyingEntropyUsing_LIMA_2018.pdf.txtExtracted texttext/plain52065https://repositorio.ufrn.br/bitstream/123456789/30826/3/QuantifyingEntropyUsing_LIMA_2018.pdf.txt71c957c5a262f4d1ca84f3c5a9821c6fMD53THUMBNAILQuantifyingEntropyUsing_LIMA_2018.pdf.jpgQuantifyingEntropyUsing_LIMA_2018.pdf.jpgGenerated Thumbnailimage/jpeg2074https://repositorio.ufrn.br/bitstream/123456789/30826/4/QuantifyingEntropyUsing_LIMA_2018.pdf.jpg3f6264facf41522715248bbe3f382badMD54123456789/308262021-11-10 16:35:10.196oai:https://repositorio.ufrn.br:123456789/30826Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-11-10T19:35:10Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Quantifying entropy using recurrence matrix microstates
title Quantifying entropy using recurrence matrix microstates
spellingShingle Quantifying entropy using recurrence matrix microstates
Corso, Gilberto
Lyapunov exponent
Logistic map
Data visualization
Lorenz system
Time series analysis
Signal processing
Phase space methods
Entropy
title_short Quantifying entropy using recurrence matrix microstates
title_full Quantifying entropy using recurrence matrix microstates
title_fullStr Quantifying entropy using recurrence matrix microstates
title_full_unstemmed Quantifying entropy using recurrence matrix microstates
title_sort Quantifying entropy using recurrence matrix microstates
author Corso, Gilberto
author_facet Corso, Gilberto
Prado, Thiago de Lima
Lima, Gustavo Zampier dos Santos
Kurths, Jürgen
Lopes, Sérgio Roberto
author_role author
author2 Prado, Thiago de Lima
Lima, Gustavo Zampier dos Santos
Kurths, Jürgen
Lopes, Sérgio Roberto
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Corso, Gilberto
Prado, Thiago de Lima
Lima, Gustavo Zampier dos Santos
Kurths, Jürgen
Lopes, Sérgio Roberto
dc.subject.por.fl_str_mv Lyapunov exponent
Logistic map
Data visualization
Lorenz system
Time series analysis
Signal processing
Phase space methods
Entropy
topic Lyapunov exponent
Logistic map
Data visualization
Lorenz system
Time series analysis
Signal processing
Phase space methods
Entropy
description We conceive a new recurrence quantifier for time series based on the concept of information entropy, in which the probabilities are associated with the presence of microstates defined on the recurrence matrix as small binary submatrices. The new methodology to compute the entropy of a time series has advantages compared to the traditional entropies defined in the literature, namely, a good correlation with the maximum Lyapunov exponent of the system and a weak dependence on the vicinity threshold parameter. Furthermore, the new method works adequately even for small segments of data, bringing consistent results for short and long time series. In a case where long time series are available, the new methodology can be employed to obtain high precision results since it does not demand large computational times related to the analysis of the entire time series or recurrence matrices, as is the case of other traditional entropy quantifiers. The method is applied to discrete and continuous systems
publishDate 2018
dc.date.issued.fl_str_mv 2018-08-09
dc.date.accessioned.fl_str_mv 2020-12-04T19:49:32Z
dc.date.available.fl_str_mv 2020-12-04T19:49:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CORSO, Gilberto; PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; KURTHS, Jürgen; LOPES, Sergio Roberto. Quantifying entropy using recurrence matrix microstates. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 083108-083108, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5042026. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5042026.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/30826
dc.identifier.issn.none.fl_str_mv 1054-1500
1089-7682
dc.identifier.doi.none.fl_str_mv 10.1063/1.5042026
identifier_str_mv CORSO, Gilberto; PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; KURTHS, Jürgen; LOPES, Sergio Roberto. Quantifying entropy using recurrence matrix microstates. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 083108-083108, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5042026. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5042026.
1054-1500
1089-7682
10.1063/1.5042026
url https://repositorio.ufrn.br/handle/123456789/30826
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/30826/2/license.txt
https://repositorio.ufrn.br/bitstream/123456789/30826/1/QuantifyingEntropyUsing_Lima_2018.pdf
https://repositorio.ufrn.br/bitstream/123456789/30826/3/QuantifyingEntropyUsing_LIMA_2018.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/30826/4/QuantifyingEntropyUsing_LIMA_2018.pdf.jpg
bitstream.checksum.fl_str_mv e9597aa2854d128fd968be5edc8a28d9
a394ae20818555e9ab3b4fc375345c80
71c957c5a262f4d1ca84f3c5a9821c6f
3f6264facf41522715248bbe3f382bad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814833015746985984