Quantifying entropy using recurrence matrix microstates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/30826 |
Resumo: | We conceive a new recurrence quantifier for time series based on the concept of information entropy, in which the probabilities are associated with the presence of microstates defined on the recurrence matrix as small binary submatrices. The new methodology to compute the entropy of a time series has advantages compared to the traditional entropies defined in the literature, namely, a good correlation with the maximum Lyapunov exponent of the system and a weak dependence on the vicinity threshold parameter. Furthermore, the new method works adequately even for small segments of data, bringing consistent results for short and long time series. In a case where long time series are available, the new methodology can be employed to obtain high precision results since it does not demand large computational times related to the analysis of the entire time series or recurrence matrices, as is the case of other traditional entropy quantifiers. The method is applied to discrete and continuous systems |
id |
UFRN_414cbc27f33d6e94b7f79e20d85f8435 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/30826 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Corso, GilbertoPrado, Thiago de LimaLima, Gustavo Zampier dos SantosKurths, JürgenLopes, Sérgio Roberto2020-12-04T19:49:32Z2020-12-04T19:49:32Z2018-08-09CORSO, Gilberto; PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; KURTHS, Jürgen; LOPES, Sergio Roberto. Quantifying entropy using recurrence matrix microstates. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 083108-083108, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5042026. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5042026.1054-15001089-7682https://repositorio.ufrn.br/handle/123456789/3082610.1063/1.5042026American Institute of PhysicsLyapunov exponentLogistic mapData visualizationLorenz systemTime series analysisSignal processingPhase space methodsEntropyQuantifying entropy using recurrence matrix microstatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleWe conceive a new recurrence quantifier for time series based on the concept of information entropy, in which the probabilities are associated with the presence of microstates defined on the recurrence matrix as small binary submatrices. The new methodology to compute the entropy of a time series has advantages compared to the traditional entropies defined in the literature, namely, a good correlation with the maximum Lyapunov exponent of the system and a weak dependence on the vicinity threshold parameter. Furthermore, the new method works adequately even for small segments of data, bringing consistent results for short and long time series. In a case where long time series are available, the new methodology can be employed to obtain high precision results since it does not demand large computational times related to the analysis of the entire time series or recurrence matrices, as is the case of other traditional entropy quantifiers. The method is applied to discrete and continuous systemsporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/30826/2/license.txte9597aa2854d128fd968be5edc8a28d9MD52ORIGINALQuantifyingEntropyUsing_Lima_2018.pdfQuantifyingEntropyUsing_Lima_2018.pdfArtigoapplication/pdf2719570https://repositorio.ufrn.br/bitstream/123456789/30826/1/QuantifyingEntropyUsing_Lima_2018.pdfa394ae20818555e9ab3b4fc375345c80MD51TEXTQuantifyingEntropyUsing_LIMA_2018.pdf.txtQuantifyingEntropyUsing_LIMA_2018.pdf.txtExtracted texttext/plain52065https://repositorio.ufrn.br/bitstream/123456789/30826/3/QuantifyingEntropyUsing_LIMA_2018.pdf.txt71c957c5a262f4d1ca84f3c5a9821c6fMD53THUMBNAILQuantifyingEntropyUsing_LIMA_2018.pdf.jpgQuantifyingEntropyUsing_LIMA_2018.pdf.jpgGenerated Thumbnailimage/jpeg2074https://repositorio.ufrn.br/bitstream/123456789/30826/4/QuantifyingEntropyUsing_LIMA_2018.pdf.jpg3f6264facf41522715248bbe3f382badMD54123456789/308262021-11-10 16:35:10.196oai:https://repositorio.ufrn.br:123456789/30826Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2021-11-10T19:35:10Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Quantifying entropy using recurrence matrix microstates |
title |
Quantifying entropy using recurrence matrix microstates |
spellingShingle |
Quantifying entropy using recurrence matrix microstates Corso, Gilberto Lyapunov exponent Logistic map Data visualization Lorenz system Time series analysis Signal processing Phase space methods Entropy |
title_short |
Quantifying entropy using recurrence matrix microstates |
title_full |
Quantifying entropy using recurrence matrix microstates |
title_fullStr |
Quantifying entropy using recurrence matrix microstates |
title_full_unstemmed |
Quantifying entropy using recurrence matrix microstates |
title_sort |
Quantifying entropy using recurrence matrix microstates |
author |
Corso, Gilberto |
author_facet |
Corso, Gilberto Prado, Thiago de Lima Lima, Gustavo Zampier dos Santos Kurths, Jürgen Lopes, Sérgio Roberto |
author_role |
author |
author2 |
Prado, Thiago de Lima Lima, Gustavo Zampier dos Santos Kurths, Jürgen Lopes, Sérgio Roberto |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Corso, Gilberto Prado, Thiago de Lima Lima, Gustavo Zampier dos Santos Kurths, Jürgen Lopes, Sérgio Roberto |
dc.subject.por.fl_str_mv |
Lyapunov exponent Logistic map Data visualization Lorenz system Time series analysis Signal processing Phase space methods Entropy |
topic |
Lyapunov exponent Logistic map Data visualization Lorenz system Time series analysis Signal processing Phase space methods Entropy |
description |
We conceive a new recurrence quantifier for time series based on the concept of information entropy, in which the probabilities are associated with the presence of microstates defined on the recurrence matrix as small binary submatrices. The new methodology to compute the entropy of a time series has advantages compared to the traditional entropies defined in the literature, namely, a good correlation with the maximum Lyapunov exponent of the system and a weak dependence on the vicinity threshold parameter. Furthermore, the new method works adequately even for small segments of data, bringing consistent results for short and long time series. In a case where long time series are available, the new methodology can be employed to obtain high precision results since it does not demand large computational times related to the analysis of the entire time series or recurrence matrices, as is the case of other traditional entropy quantifiers. The method is applied to discrete and continuous systems |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-08-09 |
dc.date.accessioned.fl_str_mv |
2020-12-04T19:49:32Z |
dc.date.available.fl_str_mv |
2020-12-04T19:49:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CORSO, Gilberto; PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; KURTHS, Jürgen; LOPES, Sergio Roberto. Quantifying entropy using recurrence matrix microstates. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 083108-083108, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5042026. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5042026. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/30826 |
dc.identifier.issn.none.fl_str_mv |
1054-1500 1089-7682 |
dc.identifier.doi.none.fl_str_mv |
10.1063/1.5042026 |
identifier_str_mv |
CORSO, Gilberto; PRADO, Thiago de Lima; LIMA, Gustavo Zampier dos Santos; KURTHS, Jürgen; LOPES, Sergio Roberto. Quantifying entropy using recurrence matrix microstates. Chaos: An Interdisciplinary Journal of Nonlinear Science, [S.L.], v. 28, n. 8, p. 083108-083108, ago. 2018. Disponível em: https://aip.scitation.org/doi/10.1063/1.5042026. Acesso em: 20 nov. 2020. http://dx.doi.org/10.1063/1.5042026. 1054-1500 1089-7682 10.1063/1.5042026 |
url |
https://repositorio.ufrn.br/handle/123456789/30826 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/30826/2/license.txt https://repositorio.ufrn.br/bitstream/123456789/30826/1/QuantifyingEntropyUsing_Lima_2018.pdf https://repositorio.ufrn.br/bitstream/123456789/30826/3/QuantifyingEntropyUsing_LIMA_2018.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/30826/4/QuantifyingEntropyUsing_LIMA_2018.pdf.jpg |
bitstream.checksum.fl_str_mv |
e9597aa2854d128fd968be5edc8a28d9 a394ae20818555e9ab3b4fc375345c80 71c957c5a262f4d1ca84f3c5a9821c6f 3f6264facf41522715248bbe3f382bad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814833015746985984 |