Euler e os números pentagonais

Detalhes bibliográficos
Autor(a) principal: Cota, Andreia Caroline da Silva
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/16078
Resumo: The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem
id UFRN_431fc6fb6e484940342c2c62b9564d08
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/16078
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Cota, Andreia Caroline da Silvahttp://lattes.cnpq.br/5608890093007885http://lattes.cnpq.br/2466525106349625Morey, Bernadete Barbosahttp://lattes.cnpq.br/7554818862651491Baroni, Rosa Lucia Sverzuthttp://lattes.cnpq.br/3641041943819764Fossa, John Andrew2014-12-17T15:04:57Z2012-05-292014-12-17T15:04:57Z2011-10-26COTA, Andreia Caroline da Silva. Euler e os números pentagonais. 2011. 105 f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2011.https://repositorio.ufrn.br/jspui/handle/123456789/16078The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theoremO presente trabalho de pesquisa compreende em um estudo de Leonhard Euler sobre os números pentagonais e o artigo Mirabilibus Proprietatibus Numerorum Pentagonalium -E524. Depois de uma breve revisão da vida e obra de Euler, analisamos os conceitos matemáticos abordados no referido artigo como também a sua contextualização histórica. Para tanto, explicamos o conceito de números figurados, mostrando seu modo de geração, bem como suas representações geométricas e algébricas. Em seguida, faz-se um pequeno histórico da busca euleriana para o Teorema dos Números Pentagonais, perpassando sua correspondência sobre o assunto com Daniel Bernoulli, Nikolaus Bernoulli e Christian Goldbach. No início, Euler afirma o teorema, porém admite que não sabe demonstrá-lo. Finalmente, em uma carta à Goldbach, de 1750, faz a procurada demonstração, a qual é publicada em E541, junto à demonstração alternativa. A expansão do conceito de número pentagonal é então explicada e justificada, tendo em vista a comparação das representações geométrica e algébrica dos novos números pentagonais com as dos números pentagonais tradicionais. Em seguida, explana-se o Teorema dos Números Pentagonais, isto é, o fato de que o produto infinito (1 x)(1 xx)(1 x 3)(1 x 4)(1 x 5)(1 x 6)(1 x 7) ... ser igual à série infinita 1 x 1 x 2+x 5+x 7 x 12 x 15+x 22+x 26 ..., onde os expoentes são dados pelos números pentagonais (expandidos) e o sinal é dado como mais ou menos conforme o expoente é um número pentagonal (seja tradicional, seja expandido) de ordem par ou ímpar. Também mencionamos que Euler, utiliza os números pentagonais e o referido teorema sobre outras partes da matemática, como: o conceito de partição, funções geradoras, a teoria do produto infinito e a soma de divisores. Finalizamos com uma explicação da demonstração do Teorema dos Números Pentagonais.application/pdfporUniversidade Federal do Rio Grande do NortePrograma de Pós-Graduação em Ensino de Ciências Naturais e MatemáticaUFRNBREnsino de Ciências Naturais e MatemáticaLeonhard EulerNúmeros pentagonaisTeorema dos números pentagonaisLeonhard EulerPentagonal numbersPentagonal number theoremCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAEuler e os números pentagonaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALAndreiaCSC_DISSERT.pdfapplication/pdf2649141https://repositorio.ufrn.br/bitstream/123456789/16078/1/AndreiaCSC_DISSERT.pdfdae08204df4fb46613c38f0ae1be765cMD51TEXTAndreiaCSC_DISSERT.pdf.txtAndreiaCSC_DISSERT.pdf.txtExtracted texttext/plain134715https://repositorio.ufrn.br/bitstream/123456789/16078/6/AndreiaCSC_DISSERT.pdf.txt9dcba060730d7ad08764eac8cb7f7069MD56THUMBNAILAndreiaCSC_DISSERT.pdf.jpgAndreiaCSC_DISSERT.pdf.jpgIM Thumbnailimage/jpeg1810https://repositorio.ufrn.br/bitstream/123456789/16078/7/AndreiaCSC_DISSERT.pdf.jpgfcb7b20c149475a32ecc01d52c0890b4MD57123456789/160782017-11-02 11:07:48.39oai:https://repositorio.ufrn.br:123456789/16078Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2017-11-02T14:07:48Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.por.fl_str_mv Euler e os números pentagonais
title Euler e os números pentagonais
spellingShingle Euler e os números pentagonais
Cota, Andreia Caroline da Silva
Leonhard Euler
Números pentagonais
Teorema dos números pentagonais
Leonhard Euler
Pentagonal numbers
Pentagonal number theorem
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Euler e os números pentagonais
title_full Euler e os números pentagonais
title_fullStr Euler e os números pentagonais
title_full_unstemmed Euler e os números pentagonais
title_sort Euler e os números pentagonais
author Cota, Andreia Caroline da Silva
author_facet Cota, Andreia Caroline da Silva
author_role author
dc.contributor.authorID.por.fl_str_mv
dc.contributor.authorLattes.por.fl_str_mv http://lattes.cnpq.br/5608890093007885
dc.contributor.advisorID.por.fl_str_mv
dc.contributor.advisorLattes.por.fl_str_mv http://lattes.cnpq.br/2466525106349625
dc.contributor.referees1.pt_BR.fl_str_mv Morey, Bernadete Barbosa
dc.contributor.referees1ID.por.fl_str_mv
dc.contributor.referees1Lattes.por.fl_str_mv http://lattes.cnpq.br/7554818862651491
dc.contributor.referees2.pt_BR.fl_str_mv Baroni, Rosa Lucia Sverzut
dc.contributor.referees2ID.por.fl_str_mv
dc.contributor.referees2Lattes.por.fl_str_mv http://lattes.cnpq.br/3641041943819764
dc.contributor.author.fl_str_mv Cota, Andreia Caroline da Silva
dc.contributor.advisor1.fl_str_mv Fossa, John Andrew
contributor_str_mv Fossa, John Andrew
dc.subject.por.fl_str_mv Leonhard Euler
Números pentagonais
Teorema dos números pentagonais
topic Leonhard Euler
Números pentagonais
Teorema dos números pentagonais
Leonhard Euler
Pentagonal numbers
Pentagonal number theorem
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Leonhard Euler
Pentagonal numbers
Pentagonal number theorem
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
description The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem
publishDate 2011
dc.date.issued.fl_str_mv 2011-10-26
dc.date.available.fl_str_mv 2012-05-29
2014-12-17T15:04:57Z
dc.date.accessioned.fl_str_mv 2014-12-17T15:04:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COTA, Andreia Caroline da Silva. Euler e os números pentagonais. 2011. 105 f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2011.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/16078
identifier_str_mv COTA, Andreia Caroline da Silva. Euler e os números pentagonais. 2011. 105 f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2011.
url https://repositorio.ufrn.br/jspui/handle/123456789/16078
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ensino de Ciências Naturais e Matemática
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Ensino de Ciências Naturais e Matemática
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/16078/1/AndreiaCSC_DISSERT.pdf
https://repositorio.ufrn.br/bitstream/123456789/16078/6/AndreiaCSC_DISSERT.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/16078/7/AndreiaCSC_DISSERT.pdf.jpg
bitstream.checksum.fl_str_mv dae08204df4fb46613c38f0ae1be765c
9dcba060730d7ad08764eac8cb7f7069
fcb7b20c149475a32ecc01d52c0890b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832865950564352