Gradient and likelihood ratio tests in cure rate models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/jspui/handle/123456789/27095 |
Resumo: | In some survival studies part of the population may be no longer subject to the event of interest. The called cure rate models take this fact into account. They have been extensively studied for several authors who have proposed extensions and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the gradient test in finite samples and compare it with the classic tests in different models. However little is known about the properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient tests in finite samples. An application is presented to illustrate the results. |
id |
UFRN_4a2cf72966aef880c3ad799a687dfe3d |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/27095 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Carneiro, Hérica P. AValença, Dione M.2019-05-17T13:23:29Z2019-05-17T13:23:29Z2016-06-11CARNEIRO, Hérica P. A. ; VALENÇA, Dione M. Gradient and Likelihood Ratio Tests in Cure Rate Models. International Journal of Statistics and Probability, v. 5, n.4, p. 9, 2016. Disponível em: <http://www.ccsenet.org/journal/index.php/ijsp/article/download/58419/33303>. Acesso em: 06 dez. 2017.1927-7040https://repositorio.ufrn.br/jspui/handle/123456789/2709510.5539/ijsp.v5n4p9Canadian Center of Science and EducationSurvival analysisUnified modelPromotion time modelGradient statisticGradient and likelihood ratio tests in cure rate modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn some survival studies part of the population may be no longer subject to the event of interest. The called cure rate models take this fact into account. They have been extensively studied for several authors who have proposed extensions and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the gradient test in finite samples and compare it with the classic tests in different models. However little is known about the properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient tests in finite samples. An application is presented to illustrate the results.info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTGradientAndLikelihood_2016.pdf.txtGradientAndLikelihood_2016.pdf.txtExtracted texttext/plain44472https://repositorio.ufrn.br/bitstream/123456789/27095/3/GradientAndLikelihood_2016.pdf.txt21cb13f12681273cd0993c62b7711d29MD53THUMBNAILGradientAndLikelihood_2016.pdf.jpgGradientAndLikelihood_2016.pdf.jpgGenerated Thumbnailimage/jpeg1733https://repositorio.ufrn.br/bitstream/123456789/27095/4/GradientAndLikelihood_2016.pdf.jpge6da4b825392694c93ae69243ea8f952MD54ORIGINALGradientAndLikelihood_2016.pdfGradientAndLikelihood_2016.pdfapplication/pdf120508https://repositorio.ufrn.br/bitstream/123456789/27095/1/GradientAndLikelihood_2016.pdf37d176ec3542833c49fe8e7e78a72693MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/27095/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/270952019-05-26 02:21:56.863oai:https://repositorio.ufrn.br:123456789/27095Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-05-26T05:21:56Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Gradient and likelihood ratio tests in cure rate models |
title |
Gradient and likelihood ratio tests in cure rate models |
spellingShingle |
Gradient and likelihood ratio tests in cure rate models Carneiro, Hérica P. A Survival analysis Unified model Promotion time model Gradient statistic |
title_short |
Gradient and likelihood ratio tests in cure rate models |
title_full |
Gradient and likelihood ratio tests in cure rate models |
title_fullStr |
Gradient and likelihood ratio tests in cure rate models |
title_full_unstemmed |
Gradient and likelihood ratio tests in cure rate models |
title_sort |
Gradient and likelihood ratio tests in cure rate models |
author |
Carneiro, Hérica P. A |
author_facet |
Carneiro, Hérica P. A Valença, Dione M. |
author_role |
author |
author2 |
Valença, Dione M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Carneiro, Hérica P. A Valença, Dione M. |
dc.subject.por.fl_str_mv |
Survival analysis Unified model Promotion time model Gradient statistic |
topic |
Survival analysis Unified model Promotion time model Gradient statistic |
description |
In some survival studies part of the population may be no longer subject to the event of interest. The called cure rate models take this fact into account. They have been extensively studied for several authors who have proposed extensions and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the gradient test in finite samples and compare it with the classic tests in different models. However little is known about the properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient tests in finite samples. An application is presented to illustrate the results. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-06-11 |
dc.date.accessioned.fl_str_mv |
2019-05-17T13:23:29Z |
dc.date.available.fl_str_mv |
2019-05-17T13:23:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CARNEIRO, Hérica P. A. ; VALENÇA, Dione M. Gradient and Likelihood Ratio Tests in Cure Rate Models. International Journal of Statistics and Probability, v. 5, n.4, p. 9, 2016. Disponível em: <http://www.ccsenet.org/journal/index.php/ijsp/article/download/58419/33303>. Acesso em: 06 dez. 2017. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/jspui/handle/123456789/27095 |
dc.identifier.issn.none.fl_str_mv |
1927-7040 |
dc.identifier.doi.none.fl_str_mv |
10.5539/ijsp.v5n4p9 |
identifier_str_mv |
CARNEIRO, Hérica P. A. ; VALENÇA, Dione M. Gradient and Likelihood Ratio Tests in Cure Rate Models. International Journal of Statistics and Probability, v. 5, n.4, p. 9, 2016. Disponível em: <http://www.ccsenet.org/journal/index.php/ijsp/article/download/58419/33303>. Acesso em: 06 dez. 2017. 1927-7040 10.5539/ijsp.v5n4p9 |
url |
https://repositorio.ufrn.br/jspui/handle/123456789/27095 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Canadian Center of Science and Education |
publisher.none.fl_str_mv |
Canadian Center of Science and Education |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/27095/3/GradientAndLikelihood_2016.pdf.txt https://repositorio.ufrn.br/bitstream/123456789/27095/4/GradientAndLikelihood_2016.pdf.jpg https://repositorio.ufrn.br/bitstream/123456789/27095/1/GradientAndLikelihood_2016.pdf https://repositorio.ufrn.br/bitstream/123456789/27095/2/license.txt |
bitstream.checksum.fl_str_mv |
21cb13f12681273cd0993c62b7711d29 e6da4b825392694c93ae69243ea8f952 37d176ec3542833c49fe8e7e78a72693 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832641695809536 |