Gradient and likelihood ratio tests in cure rate models

Detalhes bibliográficos
Autor(a) principal: Carneiro, Hérica P. A
Data de Publicação: 2016
Outros Autores: Valença, Dione M.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/jspui/handle/123456789/27095
Resumo: In some survival studies part of the population may be no longer subject to the event of interest. The called cure rate models take this fact into account. They have been extensively studied for several authors who have proposed extensions and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the gradient test in finite samples and compare it with the classic tests in different models. However little is known about the properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient tests in finite samples. An application is presented to illustrate the results.
id UFRN_4a2cf72966aef880c3ad799a687dfe3d
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/27095
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Carneiro, Hérica P. AValença, Dione M.2019-05-17T13:23:29Z2019-05-17T13:23:29Z2016-06-11CARNEIRO, Hérica P. A. ; VALENÇA, Dione M. Gradient and Likelihood Ratio Tests in Cure Rate Models. International Journal of Statistics and Probability, v. 5, n.4, p. 9, 2016. Disponível em: <http://www.ccsenet.org/journal/index.php/ijsp/article/download/58419/33303>. Acesso em: 06 dez. 2017.1927-7040https://repositorio.ufrn.br/jspui/handle/123456789/2709510.5539/ijsp.v5n4p9Canadian Center of Science and EducationSurvival analysisUnified modelPromotion time modelGradient statisticGradient and likelihood ratio tests in cure rate modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn some survival studies part of the population may be no longer subject to the event of interest. The called cure rate models take this fact into account. They have been extensively studied for several authors who have proposed extensions and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the gradient test in finite samples and compare it with the classic tests in different models. However little is known about the properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient tests in finite samples. An application is presented to illustrate the results.info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNTEXTGradientAndLikelihood_2016.pdf.txtGradientAndLikelihood_2016.pdf.txtExtracted texttext/plain44472https://repositorio.ufrn.br/bitstream/123456789/27095/3/GradientAndLikelihood_2016.pdf.txt21cb13f12681273cd0993c62b7711d29MD53THUMBNAILGradientAndLikelihood_2016.pdf.jpgGradientAndLikelihood_2016.pdf.jpgGenerated Thumbnailimage/jpeg1733https://repositorio.ufrn.br/bitstream/123456789/27095/4/GradientAndLikelihood_2016.pdf.jpge6da4b825392694c93ae69243ea8f952MD54ORIGINALGradientAndLikelihood_2016.pdfGradientAndLikelihood_2016.pdfapplication/pdf120508https://repositorio.ufrn.br/bitstream/123456789/27095/1/GradientAndLikelihood_2016.pdf37d176ec3542833c49fe8e7e78a72693MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/27095/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/270952019-05-26 02:21:56.863oai:https://repositorio.ufrn.br:123456789/27095Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2019-05-26T05:21:56Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Gradient and likelihood ratio tests in cure rate models
title Gradient and likelihood ratio tests in cure rate models
spellingShingle Gradient and likelihood ratio tests in cure rate models
Carneiro, Hérica P. A
Survival analysis
Unified model
Promotion time model
Gradient statistic
title_short Gradient and likelihood ratio tests in cure rate models
title_full Gradient and likelihood ratio tests in cure rate models
title_fullStr Gradient and likelihood ratio tests in cure rate models
title_full_unstemmed Gradient and likelihood ratio tests in cure rate models
title_sort Gradient and likelihood ratio tests in cure rate models
author Carneiro, Hérica P. A
author_facet Carneiro, Hérica P. A
Valença, Dione M.
author_role author
author2 Valença, Dione M.
author2_role author
dc.contributor.author.fl_str_mv Carneiro, Hérica P. A
Valença, Dione M.
dc.subject.por.fl_str_mv Survival analysis
Unified model
Promotion time model
Gradient statistic
topic Survival analysis
Unified model
Promotion time model
Gradient statistic
description In some survival studies part of the population may be no longer subject to the event of interest. The called cure rate models take this fact into account. They have been extensively studied for several authors who have proposed extensions and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the gradient test in finite samples and compare it with the classic tests in different models. However little is known about the properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient tests in finite samples. An application is presented to illustrate the results.
publishDate 2016
dc.date.issued.fl_str_mv 2016-06-11
dc.date.accessioned.fl_str_mv 2019-05-17T13:23:29Z
dc.date.available.fl_str_mv 2019-05-17T13:23:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARNEIRO, Hérica P. A. ; VALENÇA, Dione M. Gradient and Likelihood Ratio Tests in Cure Rate Models. International Journal of Statistics and Probability, v. 5, n.4, p. 9, 2016. Disponível em: <http://www.ccsenet.org/journal/index.php/ijsp/article/download/58419/33303>. Acesso em: 06 dez. 2017.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/jspui/handle/123456789/27095
dc.identifier.issn.none.fl_str_mv 1927-7040
dc.identifier.doi.none.fl_str_mv 10.5539/ijsp.v5n4p9
identifier_str_mv CARNEIRO, Hérica P. A. ; VALENÇA, Dione M. Gradient and Likelihood Ratio Tests in Cure Rate Models. International Journal of Statistics and Probability, v. 5, n.4, p. 9, 2016. Disponível em: <http://www.ccsenet.org/journal/index.php/ijsp/article/download/58419/33303>. Acesso em: 06 dez. 2017.
1927-7040
10.5539/ijsp.v5n4p9
url https://repositorio.ufrn.br/jspui/handle/123456789/27095
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Canadian Center of Science and Education
publisher.none.fl_str_mv Canadian Center of Science and Education
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/27095/3/GradientAndLikelihood_2016.pdf.txt
https://repositorio.ufrn.br/bitstream/123456789/27095/4/GradientAndLikelihood_2016.pdf.jpg
https://repositorio.ufrn.br/bitstream/123456789/27095/1/GradientAndLikelihood_2016.pdf
https://repositorio.ufrn.br/bitstream/123456789/27095/2/license.txt
bitstream.checksum.fl_str_mv 21cb13f12681273cd0993c62b7711d29
e6da4b825392694c93ae69243ea8f952
37d176ec3542833c49fe8e7e78a72693
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832641695809536