Produção de hidrogênio verde ambientalmente sustentável

Detalhes bibliográficos
Autor(a) principal: Paiva, Suelya da Silva Mendonça de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/47548
Resumo: Nos próximos anos, espera-se um crescimento mundial bastante significativo (aproximadamente 50% até 2050) no consumo de energia e água. A busca cada vez mais por fontes de energias renováveis é um dos pilares para se alcançar o processo de descarbonização. Diante desse cenário, o gás hidrogênio vem atraindo grandes interesses no meio industrial e acadêmico, por ser considerado um combustível limpo que possui a capacidade de desempenhar um papel importante na transição energética, alcançando um futuro com zero emissões de gases poluentes, devido a sua ampla aplicação industrial e por ser empregado como instrumento para armazenamento de energia. O gás hidrogênio pode ser produzido pela eletrólise da água (quebra da molécula de água sob uma corrente elétrica), formando produtos (O2(g)) que não agridem ao meio ambiente, diferente dos processos que tem como base os combustíveis fósseis. A contaminação de corpos hídricos por acidentes de postos de gasolina e lançamentos inapropriados de efluentes da indústria petroquímica, é um problema amplamente conhecido. A presença dos hidrocarbonetos aromáticos como o benzeno, tolueno e xileno (BTXs) no meio ambiente, exige bastante atenção devido ao seu caráter tóxico e um potencial cancerígeno desses compostos. Visando solucionar esses problemas, inúmeros tratamentos de efluentes vem sendo realizados, pois um grande número de compostos aromáticos possui uma elevada estabilidade e resistência aos tratamentos convencionais. Dessa forma, os processos oxidativos avançados eletroquímicos (POAE) vem sendo estudados a fim de que se tornem uma via alternativa de tratamento de águas residuárias, sendo caracterizado pela produção in situ de radicais hidroxilas (•OH) como o principal oxidante, mas não o exclusivo. Dentre as vantagens dessa tecnologia, tem-se a possibilidade de recuperação de energia durante o processo através da captura de H2(g), que é produzido no cátodo durante a oxidação dos poluentes no ânodo. Diante disso, o presente trabalho teve como objetivo aplicar a tecnologia POAE, para degradação de compostos recalcitrantes como o BTX, com produção simultânea de H2(g) integrada a placas solares. Os experimentos foram realizados no reator em fluxo com um coeficiente de transferência de massa de 5,11*10-5 (m/s), sob três densidades de corrente elétrica (15, 45 e 60 mA/cm²) durante 180min, para que fosse observado a degradação do poluente e simultaneamente a produção de H2(g). A degradação dos compostos aromáticos via oxidação eletroquímica, foi acompanhada por meio da análise de absorbância, cromatografia gasosa, DQO e COT. Os resultados mostraram que todos os compostos aromáticos atingiram uma concentração zero sob as três densidades de corrente elétrica. Em 60 mA/cm², foi alcançado a maior taxa de degradação, principalmente para o composto o – xileno (sendo removido completamente em menos de 60min) e em menor intensidade para o benzeno (em menos de 90min). Também foi observado que em elevadas densidade de corrente, maior é a produção de H2(g), com uma taxa de 6.45, 5.10 e 0.57 ml/min, para o benzeno sob a densidade de corrente de 60, 45 e 15mA/cm², respectivamente.
id UFRN_4ce4b78d00588d8583ddd93d8619102c
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/47548
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Paiva, Suelya da Silva Mendonça dehttp://lattes.cnpq.br/5280028188695268https://orcid.org/0000-0003-2189-5694http://lattes.cnpq.br/8117747568545202Barros Neto, Eduardo Lins dehttp://lattes.cnpq.br/2811639726261017Huitle, Carlos Alberto MartinezSolano, Aline Maria SalesAraújo, Danyelle Medeiros deSantos, Elisama Vieira dos2022-06-06T19:47:16Z2022-06-06T19:47:16Z2022-02-14PAIVA, Suelya da Silva Mendonça de. Produção de hidrogênio verde ambientalmente sustentável. 2022. 111f. Dissertação (Mestrado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/47548Nos próximos anos, espera-se um crescimento mundial bastante significativo (aproximadamente 50% até 2050) no consumo de energia e água. A busca cada vez mais por fontes de energias renováveis é um dos pilares para se alcançar o processo de descarbonização. Diante desse cenário, o gás hidrogênio vem atraindo grandes interesses no meio industrial e acadêmico, por ser considerado um combustível limpo que possui a capacidade de desempenhar um papel importante na transição energética, alcançando um futuro com zero emissões de gases poluentes, devido a sua ampla aplicação industrial e por ser empregado como instrumento para armazenamento de energia. O gás hidrogênio pode ser produzido pela eletrólise da água (quebra da molécula de água sob uma corrente elétrica), formando produtos (O2(g)) que não agridem ao meio ambiente, diferente dos processos que tem como base os combustíveis fósseis. A contaminação de corpos hídricos por acidentes de postos de gasolina e lançamentos inapropriados de efluentes da indústria petroquímica, é um problema amplamente conhecido. A presença dos hidrocarbonetos aromáticos como o benzeno, tolueno e xileno (BTXs) no meio ambiente, exige bastante atenção devido ao seu caráter tóxico e um potencial cancerígeno desses compostos. Visando solucionar esses problemas, inúmeros tratamentos de efluentes vem sendo realizados, pois um grande número de compostos aromáticos possui uma elevada estabilidade e resistência aos tratamentos convencionais. Dessa forma, os processos oxidativos avançados eletroquímicos (POAE) vem sendo estudados a fim de que se tornem uma via alternativa de tratamento de águas residuárias, sendo caracterizado pela produção in situ de radicais hidroxilas (•OH) como o principal oxidante, mas não o exclusivo. Dentre as vantagens dessa tecnologia, tem-se a possibilidade de recuperação de energia durante o processo através da captura de H2(g), que é produzido no cátodo durante a oxidação dos poluentes no ânodo. Diante disso, o presente trabalho teve como objetivo aplicar a tecnologia POAE, para degradação de compostos recalcitrantes como o BTX, com produção simultânea de H2(g) integrada a placas solares. Os experimentos foram realizados no reator em fluxo com um coeficiente de transferência de massa de 5,11*10-5 (m/s), sob três densidades de corrente elétrica (15, 45 e 60 mA/cm²) durante 180min, para que fosse observado a degradação do poluente e simultaneamente a produção de H2(g). A degradação dos compostos aromáticos via oxidação eletroquímica, foi acompanhada por meio da análise de absorbância, cromatografia gasosa, DQO e COT. Os resultados mostraram que todos os compostos aromáticos atingiram uma concentração zero sob as três densidades de corrente elétrica. Em 60 mA/cm², foi alcançado a maior taxa de degradação, principalmente para o composto o – xileno (sendo removido completamente em menos de 60min) e em menor intensidade para o benzeno (em menos de 90min). Também foi observado que em elevadas densidade de corrente, maior é a produção de H2(g), com uma taxa de 6.45, 5.10 e 0.57 ml/min, para o benzeno sob a densidade de corrente de 60, 45 e 15mA/cm², respectivamente.In the coming years, a very significant worldwide growth (approximately 50% by 2050) in energy and water consumption is expected. The increasingly search for renewable energy sources is one of the pillars to achieve the decarbonization process. Given this scenario, hydrogen gas has been attracting great interest in the industrial and academic environment, as it is considered a clean fuel that has the ability to play an important role in the energy transition, achieving a future with zero emissions of polluting gases, due to its wide industrial application and for being used as an instrument for energy storage. Hydrogen gas can be produced by the electrolysis of water (breaking down of the water molecule under an electric current), forming products (O2(g)) that do not harm the environment, unlike processes that are based on fossil fuels. Contamination of water bodies by gas station accidents and inappropriate releases of effluents from the petrochemical industry is a widely known problem. The presence of aromatic hydrocarbons such as benzene, toluene and xylene (BTXs) in the environment requires close attention due to their toxic character and carcinogenic potential of these compounds. In order to solve these problems, numerous effluent treatments have been carried out, as a large number of aromatic compounds have high stability and resistance to conventional treatments. Thus, advanced electrochemical oxidative processes (POAE) have been studied in order to become an alternative way of treating wastewater, being characterized by the in situ production of hydroxyl radicals (•OH) as the main oxidant, but not the main oxidant exclusive. Among the advantages of this technology, there is the possibility of recovering energy during the process by capturing H2(g), which is produced at the cathode during the oxidation of pollutants at the anode. Therefore, the present work aimed to apply the POAE technology, for the degradation of recalcitrant compounds such as BTX, with simultaneous production of H2(g) integrated into solar panels. The experiments were carried out in a flow reactor with a mass transfer coefficient of 5.11*10-5 (m/s), under three electric current densities (15, 45 and 60 mA/cm²) for 180min, so that pollutant degradation and simultaneously the production of H2(g) were observed. The degradation of aromatic compounds via electrochemical oxidation was monitored by means of absorbance analysis, gas chromatography, COD and TOC. The results showed that all aromatic compounds reached zero concentration under the three electric current densities. At 60 mA/cm², the highest degradation rate was achieved, mainly for the o-xylene compound (being completely removed in less than 60min) and to a lesser extent for benzene (in less than 90min). It was also observed that at high current density, higher is the production of H2(g), with a rate of 6.45, 5.10 and 0.57 ml/min, for benzene under current density of 60, 45 and 15mA/cm², respectively.Universidade Federal do Rio Grande do NortePROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICAUFRNBrasilEnergia renovávelEletroquímicaHidrogênio verdeProdução de hidrogênio verde ambientalmente sustentávelEnvironmentally sustainable green hydrogen productioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALProducaohidrogenioverde_Paiva_2022.pdfapplication/pdf1473256https://repositorio.ufrn.br/bitstream/123456789/47548/1/Producaohidrogenioverde_Paiva_2022.pdf066ffbb89707f835da7927bb13d9696dMD51123456789/475482022-06-06 16:48:09.324oai:https://repositorio.ufrn.br:123456789/47548Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-06-06T19:48:09Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Produção de hidrogênio verde ambientalmente sustentável
dc.title.alternative.pt_BR.fl_str_mv Environmentally sustainable green hydrogen production
title Produção de hidrogênio verde ambientalmente sustentável
spellingShingle Produção de hidrogênio verde ambientalmente sustentável
Paiva, Suelya da Silva Mendonça de
Energia renovável
Eletroquímica
Hidrogênio verde
title_short Produção de hidrogênio verde ambientalmente sustentável
title_full Produção de hidrogênio verde ambientalmente sustentável
title_fullStr Produção de hidrogênio verde ambientalmente sustentável
title_full_unstemmed Produção de hidrogênio verde ambientalmente sustentável
title_sort Produção de hidrogênio verde ambientalmente sustentável
author Paiva, Suelya da Silva Mendonça de
author_facet Paiva, Suelya da Silva Mendonça de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5280028188695268
dc.contributor.advisorID.pt_BR.fl_str_mv https://orcid.org/0000-0003-2189-5694
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8117747568545202
dc.contributor.referees1.none.fl_str_mv Huitle, Carlos Alberto Martinez
dc.contributor.referees2.none.fl_str_mv Solano, Aline Maria Sales
dc.contributor.referees3.none.fl_str_mv Araújo, Danyelle Medeiros de
dc.contributor.author.fl_str_mv Paiva, Suelya da Silva Mendonça de
dc.contributor.advisor-co1.fl_str_mv Barros Neto, Eduardo Lins de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2811639726261017
dc.contributor.advisor1.fl_str_mv Santos, Elisama Vieira dos
contributor_str_mv Barros Neto, Eduardo Lins de
Santos, Elisama Vieira dos
dc.subject.por.fl_str_mv Energia renovável
Eletroquímica
Hidrogênio verde
topic Energia renovável
Eletroquímica
Hidrogênio verde
description Nos próximos anos, espera-se um crescimento mundial bastante significativo (aproximadamente 50% até 2050) no consumo de energia e água. A busca cada vez mais por fontes de energias renováveis é um dos pilares para se alcançar o processo de descarbonização. Diante desse cenário, o gás hidrogênio vem atraindo grandes interesses no meio industrial e acadêmico, por ser considerado um combustível limpo que possui a capacidade de desempenhar um papel importante na transição energética, alcançando um futuro com zero emissões de gases poluentes, devido a sua ampla aplicação industrial e por ser empregado como instrumento para armazenamento de energia. O gás hidrogênio pode ser produzido pela eletrólise da água (quebra da molécula de água sob uma corrente elétrica), formando produtos (O2(g)) que não agridem ao meio ambiente, diferente dos processos que tem como base os combustíveis fósseis. A contaminação de corpos hídricos por acidentes de postos de gasolina e lançamentos inapropriados de efluentes da indústria petroquímica, é um problema amplamente conhecido. A presença dos hidrocarbonetos aromáticos como o benzeno, tolueno e xileno (BTXs) no meio ambiente, exige bastante atenção devido ao seu caráter tóxico e um potencial cancerígeno desses compostos. Visando solucionar esses problemas, inúmeros tratamentos de efluentes vem sendo realizados, pois um grande número de compostos aromáticos possui uma elevada estabilidade e resistência aos tratamentos convencionais. Dessa forma, os processos oxidativos avançados eletroquímicos (POAE) vem sendo estudados a fim de que se tornem uma via alternativa de tratamento de águas residuárias, sendo caracterizado pela produção in situ de radicais hidroxilas (•OH) como o principal oxidante, mas não o exclusivo. Dentre as vantagens dessa tecnologia, tem-se a possibilidade de recuperação de energia durante o processo através da captura de H2(g), que é produzido no cátodo durante a oxidação dos poluentes no ânodo. Diante disso, o presente trabalho teve como objetivo aplicar a tecnologia POAE, para degradação de compostos recalcitrantes como o BTX, com produção simultânea de H2(g) integrada a placas solares. Os experimentos foram realizados no reator em fluxo com um coeficiente de transferência de massa de 5,11*10-5 (m/s), sob três densidades de corrente elétrica (15, 45 e 60 mA/cm²) durante 180min, para que fosse observado a degradação do poluente e simultaneamente a produção de H2(g). A degradação dos compostos aromáticos via oxidação eletroquímica, foi acompanhada por meio da análise de absorbância, cromatografia gasosa, DQO e COT. Os resultados mostraram que todos os compostos aromáticos atingiram uma concentração zero sob as três densidades de corrente elétrica. Em 60 mA/cm², foi alcançado a maior taxa de degradação, principalmente para o composto o – xileno (sendo removido completamente em menos de 60min) e em menor intensidade para o benzeno (em menos de 90min). Também foi observado que em elevadas densidade de corrente, maior é a produção de H2(g), com uma taxa de 6.45, 5.10 e 0.57 ml/min, para o benzeno sob a densidade de corrente de 60, 45 e 15mA/cm², respectivamente.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-06-06T19:47:16Z
dc.date.available.fl_str_mv 2022-06-06T19:47:16Z
dc.date.issued.fl_str_mv 2022-02-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PAIVA, Suelya da Silva Mendonça de. Produção de hidrogênio verde ambientalmente sustentável. 2022. 111f. Dissertação (Mestrado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/47548
identifier_str_mv PAIVA, Suelya da Silva Mendonça de. Produção de hidrogênio verde ambientalmente sustentável. 2022. 111f. Dissertação (Mestrado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2022.
url https://repositorio.ufrn.br/handle/123456789/47548
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/47548/1/Producaohidrogenioverde_Paiva_2022.pdf
bitstream.checksum.fl_str_mv 066ffbb89707f835da7927bb13d9696d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1802117799921844224