Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models

Detalhes bibliográficos
Autor(a) principal: Araújo, Mariana C.
Data de Publicação: 2017
Outros Autores: Cysneiros, Audrey H. M. A., Montenegro, Lourdes C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/50959
Resumo: In this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application.
id UFRN_4ef190604bf1c37cbfc9ec7b516aef3a
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/50959
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Araújo, Mariana C.Cysneiros, Audrey H. M. A.Montenegro, Lourdes C.2023-01-16T19:21:41Z2023-01-16T19:21:41Z2017-07ARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017.https://repositorio.ufrn.br/handle/123456789/5095910.1007/s00362-017-0933-5SpringerBartlett correctionBootstrapLikelihood ratio testModified profile likelihood ratio testImproved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALImprovedHeteroskedasticity_2017.pdfImprovedHeteroskedasticity_2017.pdfapplication/pdf676419https://repositorio.ufrn.br/bitstream/123456789/50959/1/ImprovedHeteroskedasticity_2017.pdf19d83d13a85e5bb0ae9f2b6abaf0f89fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/50959/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/509592023-01-16 16:21:42.417oai:https://repositorio.ufrn.br:123456789/50959Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-01-16T19:21:42Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
title Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
spellingShingle Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
Araújo, Mariana C.
Bartlett correction
Bootstrap
Likelihood ratio test
Modified profile likelihood ratio test
title_short Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
title_full Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
title_fullStr Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
title_full_unstemmed Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
title_sort Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
author Araújo, Mariana C.
author_facet Araújo, Mariana C.
Cysneiros, Audrey H. M. A.
Montenegro, Lourdes C.
author_role author
author2 Cysneiros, Audrey H. M. A.
Montenegro, Lourdes C.
author2_role author
author
dc.contributor.author.fl_str_mv Araújo, Mariana C.
Cysneiros, Audrey H. M. A.
Montenegro, Lourdes C.
dc.subject.por.fl_str_mv Bartlett correction
Bootstrap
Likelihood ratio test
Modified profile likelihood ratio test
topic Bartlett correction
Bootstrap
Likelihood ratio test
Modified profile likelihood ratio test
description In this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application.
publishDate 2017
dc.date.issued.fl_str_mv 2017-07
dc.date.accessioned.fl_str_mv 2023-01-16T19:21:41Z
dc.date.available.fl_str_mv 2023-01-16T19:21:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv ARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/50959
dc.identifier.doi.none.fl_str_mv 10.1007/s00362-017-0933-5
identifier_str_mv ARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017.
10.1007/s00362-017-0933-5
url https://repositorio.ufrn.br/handle/123456789/50959
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/50959/1/ImprovedHeteroskedasticity_2017.pdf
https://repositorio.ufrn.br/bitstream/123456789/50959/2/license.txt
bitstream.checksum.fl_str_mv 19d83d13a85e5bb0ae9f2b6abaf0f89f
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832765193945088