Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/50959 |
Resumo: | In this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application. |
id |
UFRN_4ef190604bf1c37cbfc9ec7b516aef3a |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/50959 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Araújo, Mariana C.Cysneiros, Audrey H. M. A.Montenegro, Lourdes C.2023-01-16T19:21:41Z2023-01-16T19:21:41Z2017-07ARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017.https://repositorio.ufrn.br/handle/123456789/5095910.1007/s00362-017-0933-5SpringerBartlett correctionBootstrapLikelihood ratio testModified profile likelihood ratio testImproved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALImprovedHeteroskedasticity_2017.pdfImprovedHeteroskedasticity_2017.pdfapplication/pdf676419https://repositorio.ufrn.br/bitstream/123456789/50959/1/ImprovedHeteroskedasticity_2017.pdf19d83d13a85e5bb0ae9f2b6abaf0f89fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/50959/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/509592023-01-16 16:21:42.417oai:https://repositorio.ufrn.br:123456789/50959Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2023-01-16T19:21:42Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
title |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
spellingShingle |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models Araújo, Mariana C. Bartlett correction Bootstrap Likelihood ratio test Modified profile likelihood ratio test |
title_short |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
title_full |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
title_fullStr |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
title_full_unstemmed |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
title_sort |
Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models |
author |
Araújo, Mariana C. |
author_facet |
Araújo, Mariana C. Cysneiros, Audrey H. M. A. Montenegro, Lourdes C. |
author_role |
author |
author2 |
Cysneiros, Audrey H. M. A. Montenegro, Lourdes C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Araújo, Mariana C. Cysneiros, Audrey H. M. A. Montenegro, Lourdes C. |
dc.subject.por.fl_str_mv |
Bartlett correction Bootstrap Likelihood ratio test Modified profile likelihood ratio test |
topic |
Bartlett correction Bootstrap Likelihood ratio test Modified profile likelihood ratio test |
description |
In this paper we address the issue of testing inference of the dispersion parameter in heteroscedastic symmetric nonlinear regression models considering small samples.We deriveBartlett corrections to improve the likelihood ratio as well modified profile likelihood ratio tests. Our results extend some of those obtained in Cordeiro (J Stat Comput Simul 74:609–620, 2004) and Ferrari et al. (J Stat Plan Inference 124:423– 437, 2004), who consider a symmetric nonlinear regression model and normal linear regression model, respectively. We also present the bootstrap and bootstrap Bartlett corrected likelihood ratio tests. Monte Carlo simulations are carried out to compare the finite sample performances of the three corrected tests and their uncorrected versions. The numerical evidence shows that the corrected modified profile likelihood ratio test, the bootstrap and bootstrap Bartlett corrected likelihood ratio test perform better than the other ones. We also present an empirical application. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-07 |
dc.date.accessioned.fl_str_mv |
2023-01-16T19:21:41Z |
dc.date.available.fl_str_mv |
2023-01-16T19:21:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/50959 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00362-017-0933-5 |
identifier_str_mv |
ARAÚJO, Mariana C.; CYSNEIROS, Audrey H. M. A. ; MONTENEGRO, Lourdes C. . Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models. Statistical Papers (Online), Germany, p. 1-22, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs00362-017-0933-5. Acesso em: 07 dez. 2017. 10.1007/s00362-017-0933-5 |
url |
https://repositorio.ufrn.br/handle/123456789/50959 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/50959/1/ImprovedHeteroskedasticity_2017.pdf https://repositorio.ufrn.br/bitstream/123456789/50959/2/license.txt |
bitstream.checksum.fl_str_mv |
19d83d13a85e5bb0ae9f2b6abaf0f89f 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832765193945088 |