A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/48844 |
Resumo: | This work is a comparison study between two Deep Neural Network (DNN) models in the augmented reality context, aiming to produce visually coherent augmented indoor images with a virtual object inserted. We trained DNN models to generate coherent shadows and illumination for an unlit object given a computer generated photorealistic indoor environment as a reference. The goal is to add the artificially lit object to the reference scene and make it blend in nicely when seen by an human viewer unaware of the interference. We develop a dataset Indoor Shadows with 4826 set of images from the 3D-Front scene dataset, in order to use it as our benchmark. The Pix2Pix and ShadowGAN were trained using the SGD, and Adam, and compared regarding the generated images with a ground truth. We used the L1, L2, and MSSIM metrics to evaluate the results of the trained models. We found that the ShadowGAN trained with Adam had the best results regarding the MSSIM metric and the Pix2Pix trained with SGD and the best results with L1, and L2. We concluded that both techniques are very limited, and the generated images are easily distinguishable from the ground truth. |
id |
UFRN_53043471812b33702ea304df008c9483 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/48844 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Curinga, Artur Maricatohttp://lattes.cnpq.br/6740272956017842https://orcid.org/ 0000-0002-8056-1101http://lattes.cnpq.br/4022950700003347Thomé, Antônio Carlos Gayhttp://lattes.cnpq.br/9282046098909851Santos, Selan Rodrigues doshttps://orcid.org/0000-0002-8056-1101http://lattes.cnpq.br/4022950700003347Thomé, Antônio Carlos Gayhttp://lattes.cnpq.br/9282046098909851Carvalho, Bruno Motta dehttps://orcid.org/0000-0002-9122-0257http://lattes.cnpq.br/0330924133337698Campos, André Maurício Cunhahttp://lattes.cnpq.br/7154508093406987Santos, Selan Rodrigues dos2022-07-29T11:53:07Z2022-07-29T11:53:07Z2022-07-14CURINGA, Artur Maricato. A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images. 2022. 40 f. TCC (Graduação) - Curso de Ciência da Computação, Dimap - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/48844This work is a comparison study between two Deep Neural Network (DNN) models in the augmented reality context, aiming to produce visually coherent augmented indoor images with a virtual object inserted. We trained DNN models to generate coherent shadows and illumination for an unlit object given a computer generated photorealistic indoor environment as a reference. The goal is to add the artificially lit object to the reference scene and make it blend in nicely when seen by an human viewer unaware of the interference. We develop a dataset Indoor Shadows with 4826 set of images from the 3D-Front scene dataset, in order to use it as our benchmark. The Pix2Pix and ShadowGAN were trained using the SGD, and Adam, and compared regarding the generated images with a ground truth. We used the L1, L2, and MSSIM metrics to evaluate the results of the trained models. We found that the ShadowGAN trained with Adam had the best results regarding the MSSIM metric and the Pix2Pix trained with SGD and the best results with L1, and L2. We concluded that both techniques are very limited, and the generated images are easily distinguishable from the ground truth.O presente trabalho tem como objetivo fazer uma análise comparativa entre dois modelos de redes neurais profundas no contexto de realidade aumentada, visando produzir imagens realistas de ambientes internos com um objeto virtual inseridos. Os modelos de aprendizado profundo foram treinados para re-iluminar e gerar sombras a partir de uma imagem com um objeto virtual inserido sem o contexto de iluminação da cena.Para a produção da comparação, o dataset Indoor Shadows foi construído com 4826 conjuntos de imagens a partir do 3D-Front. Os dois modelos Pix2Pix e ShadowGAN foram treinados usando os otimizadores SGD e Adam e comparados a partir da semalhança das imagens produzidas com uma imagem de referência. As métricas L1, L2 e MSSIM foram utilizadas para medir a similaridade das imagens.O modelo ShadowGAN treinado com o otimizador Adam apresentou o melhor resultado com a métrica MSSIM e o modelo Pix2Pix treinado com SGD os melhores resultados com as métricas L1 e L2. Apesar disso, mostrou-se que há um grandes limitações em ambaUniversidade Federal do Rio Grande do NorteCiência da ComputaçãoUFRNBrasilDIMAp - Departamento de Informática e Matemática AplicadaAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessAugmented RealityNeural NetworksIlluminationRealidade AumentadaRedes NeuraisIluminaçãoA Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented ImagesEstudo comparativo de técnicas de iluminação de objetos virtuais em imagens de realidade aumentada usando transformação de image-para-imageinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/48844/9/license.txte9597aa2854d128fd968be5edc8a28d9MD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/48844/8/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD58ORIGINALComparativeStudyofImage_Curinga_2022.pdfComparativeStudyofImage_Curinga_2022.pdfapplication/pdf10913272https://repositorio.ufrn.br/bitstream/123456789/48844/7/ComparativeStudyofImage_Curinga_2022.pdf915fa4523415935003c025c92126f02eMD57123456789/488442022-08-19 09:15:32.681oai:https://repositorio.ufrn.br:123456789/48844Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-08-19T12:15:32Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
dc.title.alternative.pt_BR.fl_str_mv |
Estudo comparativo de técnicas de iluminação de objetos virtuais em imagens de realidade aumentada usando transformação de image-para-image |
title |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
spellingShingle |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images Curinga, Artur Maricato Augmented Reality Neural Networks Illumination Realidade Aumentada Redes Neurais Iluminação |
title_short |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
title_full |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
title_fullStr |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
title_full_unstemmed |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
title_sort |
A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images |
author |
Curinga, Artur Maricato |
author_facet |
Curinga, Artur Maricato |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6740272956017842 |
dc.contributor.advisorID.pt_BR.fl_str_mv |
https://orcid.org/ 0000-0002-8056-1101 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4022950700003347 |
dc.contributor.referees1.none.fl_str_mv |
Santos, Selan Rodrigues dos |
dc.contributor.referees1ID.pt_BR.fl_str_mv |
https://orcid.org/0000-0002-8056-1101 |
dc.contributor.referees1Lattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4022950700003347 |
dc.contributor.referees2.none.fl_str_mv |
Thomé, Antônio Carlos Gay |
dc.contributor.referees2Lattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9282046098909851 |
dc.contributor.referees3.none.fl_str_mv |
Carvalho, Bruno Motta de |
dc.contributor.referees3ID.pt_BR.fl_str_mv |
https://orcid.org/0000-0002-9122-0257 |
dc.contributor.referees3Lattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0330924133337698 |
dc.contributor.referees4.none.fl_str_mv |
Campos, André Maurício Cunha |
dc.contributor.referees4Lattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7154508093406987 |
dc.contributor.author.fl_str_mv |
Curinga, Artur Maricato |
dc.contributor.advisor-co1.fl_str_mv |
Thomé, Antônio Carlos Gay |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9282046098909851 |
dc.contributor.advisor1.fl_str_mv |
Santos, Selan Rodrigues dos |
contributor_str_mv |
Thomé, Antônio Carlos Gay Santos, Selan Rodrigues dos |
dc.subject.por.fl_str_mv |
Augmented Reality Neural Networks Illumination Realidade Aumentada Redes Neurais Iluminação |
topic |
Augmented Reality Neural Networks Illumination Realidade Aumentada Redes Neurais Iluminação |
description |
This work is a comparison study between two Deep Neural Network (DNN) models in the augmented reality context, aiming to produce visually coherent augmented indoor images with a virtual object inserted. We trained DNN models to generate coherent shadows and illumination for an unlit object given a computer generated photorealistic indoor environment as a reference. The goal is to add the artificially lit object to the reference scene and make it blend in nicely when seen by an human viewer unaware of the interference. We develop a dataset Indoor Shadows with 4826 set of images from the 3D-Front scene dataset, in order to use it as our benchmark. The Pix2Pix and ShadowGAN were trained using the SGD, and Adam, and compared regarding the generated images with a ground truth. We used the L1, L2, and MSSIM metrics to evaluate the results of the trained models. We found that the ShadowGAN trained with Adam had the best results regarding the MSSIM metric and the Pix2Pix trained with SGD and the best results with L1, and L2. We concluded that both techniques are very limited, and the generated images are easily distinguishable from the ground truth. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-29T11:53:07Z |
dc.date.available.fl_str_mv |
2022-07-29T11:53:07Z |
dc.date.issued.fl_str_mv |
2022-07-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CURINGA, Artur Maricato. A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images. 2022. 40 f. TCC (Graduação) - Curso de Ciência da Computação, Dimap - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/48844 |
identifier_str_mv |
CURINGA, Artur Maricato. A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images. 2022. 40 f. TCC (Graduação) - Curso de Ciência da Computação, Dimap - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2022. |
url |
https://repositorio.ufrn.br/handle/123456789/48844 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 3.0 Brazil http://creativecommons.org/licenses/by/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.publisher.program.fl_str_mv |
Ciência da Computação |
dc.publisher.initials.fl_str_mv |
UFRN |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DIMAp - Departamento de Informática e Matemática Aplicada |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/48844/9/license.txt https://repositorio.ufrn.br/bitstream/123456789/48844/8/license_rdf https://repositorio.ufrn.br/bitstream/123456789/48844/7/ComparativeStudyofImage_Curinga_2022.pdf |
bitstream.checksum.fl_str_mv |
e9597aa2854d128fd968be5edc8a28d9 4d2950bda3d176f570a9f8b328dfbbef 915fa4523415935003c025c92126f02e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832697868025856 |