A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images

Detalhes bibliográficos
Autor(a) principal: Curinga, Artur Maricato
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/48844
Resumo: This work is a comparison study between two Deep Neural Network (DNN) models in the augmented reality context, aiming to produce visually coherent augmented indoor images with a virtual object inserted. We trained DNN models to generate coherent shadows and illumination for an unlit object given a computer generated photorealistic indoor environment as a reference. The goal is to add the artificially lit object to the reference scene and make it blend in nicely when seen by an human viewer unaware of the interference. We develop a dataset Indoor Shadows with 4826 set of images from the 3D-Front scene dataset, in order to use it as our benchmark. The Pix2Pix and ShadowGAN were trained using the SGD, and Adam, and compared regarding the generated images with a ground truth. We used the L1, L2, and MSSIM metrics to evaluate the results of the trained models. We found that the ShadowGAN trained with Adam had the best results regarding the MSSIM metric and the Pix2Pix trained with SGD and the best results with L1, and L2. We concluded that both techniques are very limited, and the generated images are easily distinguishable from the ground truth.
id UFRN_53043471812b33702ea304df008c9483
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/48844
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Curinga, Artur Maricatohttp://lattes.cnpq.br/6740272956017842https://orcid.org/ 0000-0002-8056-1101http://lattes.cnpq.br/4022950700003347Thomé, Antônio Carlos Gayhttp://lattes.cnpq.br/9282046098909851Santos, Selan Rodrigues doshttps://orcid.org/0000-0002-8056-1101http://lattes.cnpq.br/4022950700003347Thomé, Antônio Carlos Gayhttp://lattes.cnpq.br/9282046098909851Carvalho, Bruno Motta dehttps://orcid.org/0000-0002-9122-0257http://lattes.cnpq.br/0330924133337698Campos, André Maurício Cunhahttp://lattes.cnpq.br/7154508093406987Santos, Selan Rodrigues dos2022-07-29T11:53:07Z2022-07-29T11:53:07Z2022-07-14CURINGA, Artur Maricato. A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images. 2022. 40 f. TCC (Graduação) - Curso de Ciência da Computação, Dimap - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/48844This work is a comparison study between two Deep Neural Network (DNN) models in the augmented reality context, aiming to produce visually coherent augmented indoor images with a virtual object inserted. We trained DNN models to generate coherent shadows and illumination for an unlit object given a computer generated photorealistic indoor environment as a reference. The goal is to add the artificially lit object to the reference scene and make it blend in nicely when seen by an human viewer unaware of the interference. We develop a dataset Indoor Shadows with 4826 set of images from the 3D-Front scene dataset, in order to use it as our benchmark. The Pix2Pix and ShadowGAN were trained using the SGD, and Adam, and compared regarding the generated images with a ground truth. We used the L1, L2, and MSSIM metrics to evaluate the results of the trained models. We found that the ShadowGAN trained with Adam had the best results regarding the MSSIM metric and the Pix2Pix trained with SGD and the best results with L1, and L2. We concluded that both techniques are very limited, and the generated images are easily distinguishable from the ground truth.O presente trabalho tem como objetivo fazer uma análise comparativa entre dois modelos de redes neurais profundas no contexto de realidade aumentada, visando produzir imagens realistas de ambientes internos com um objeto virtual inseridos. Os modelos de aprendizado profundo foram treinados para re-iluminar e gerar sombras a partir de uma imagem com um objeto virtual inserido sem o contexto de iluminação da cena.Para a produção da comparação, o dataset Indoor Shadows foi construído com 4826 conjuntos de imagens a partir do 3D-Front. Os dois modelos Pix2Pix e ShadowGAN foram treinados usando os otimizadores SGD e Adam e comparados a partir da semalhança das imagens produzidas com uma imagem de referência. As métricas L1, L2 e MSSIM foram utilizadas para medir a similaridade das imagens.O modelo ShadowGAN treinado com o otimizador Adam apresentou o melhor resultado com a métrica MSSIM e o modelo Pix2Pix treinado com SGD os melhores resultados com as métricas L1 e L2. Apesar disso, mostrou-se que há um grandes limitações em ambaUniversidade Federal do Rio Grande do NorteCiência da ComputaçãoUFRNBrasilDIMAp - Departamento de Informática e Matemática AplicadaAttribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessAugmented RealityNeural NetworksIlluminationRealidade AumentadaRedes NeuraisIluminaçãoA Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented ImagesEstudo comparativo de técnicas de iluminação de objetos virtuais em imagens de realidade aumentada usando transformação de image-para-imageinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81484https://repositorio.ufrn.br/bitstream/123456789/48844/9/license.txte9597aa2854d128fd968be5edc8a28d9MD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.ufrn.br/bitstream/123456789/48844/8/license_rdf4d2950bda3d176f570a9f8b328dfbbefMD58ORIGINALComparativeStudyofImage_Curinga_2022.pdfComparativeStudyofImage_Curinga_2022.pdfapplication/pdf10913272https://repositorio.ufrn.br/bitstream/123456789/48844/7/ComparativeStudyofImage_Curinga_2022.pdf915fa4523415935003c025c92126f02eMD57123456789/488442022-08-19 09:15:32.681oai:https://repositorio.ufrn.br:123456789/48844Tk9OLUVYQ0xVU0lWRSBESVNUUklCVVRJT04gTElDRU5TRQoKCkJ5IHNpZ25pbmcgYW5kIGRlbGl2ZXJpbmcgdGhpcyBsaWNlbnNlLCBNci4gKGF1dGhvciBvciBjb3B5cmlnaHQgaG9sZGVyKToKCgphKSBHcmFudHMgdGhlIFVuaXZlcnNpZGFkZSBGZWRlcmFsIFJpbyBHcmFuZGUgZG8gTm9ydGUgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgb2YKcmVwcm9kdWNlLCBjb252ZXJ0IChhcyBkZWZpbmVkIGJlbG93KSwgY29tbXVuaWNhdGUgYW5kIC8gb3IKZGlzdHJpYnV0ZSB0aGUgZGVsaXZlcmVkIGRvY3VtZW50IChpbmNsdWRpbmcgYWJzdHJhY3QgLyBhYnN0cmFjdCkgaW4KZGlnaXRhbCBvciBwcmludGVkIGZvcm1hdCBhbmQgaW4gYW55IG1lZGl1bS4KCmIpIERlY2xhcmVzIHRoYXQgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBpdHMgb3JpZ2luYWwgd29yaywgYW5kIHRoYXQKeW91IGhhdmUgdGhlIHJpZ2h0IHRvIGdyYW50IHRoZSByaWdodHMgY29udGFpbmVkIGluIHRoaXMgbGljZW5zZS4gRGVjbGFyZXMKdGhhdCB0aGUgZGVsaXZlcnkgb2YgdGhlIGRvY3VtZW50IGRvZXMgbm90IGluZnJpbmdlLCBhcyBmYXIgYXMgaXQgaXMKdGhlIHJpZ2h0cyBvZiBhbnkgb3RoZXIgcGVyc29uIG9yIGVudGl0eS4KCmMpIElmIHRoZSBkb2N1bWVudCBkZWxpdmVyZWQgY29udGFpbnMgbWF0ZXJpYWwgd2hpY2ggZG9lcyBub3QKcmlnaHRzLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBvYnRhaW5lZCBhdXRob3JpemF0aW9uIGZyb20gdGhlIGhvbGRlciBvZiB0aGUKY29weXJpZ2h0IHRvIGdyYW50IHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCB0aGlzIG1hdGVyaWFsIHdob3NlIHJpZ2h0cyBhcmUgb2YKdGhpcmQgcGFydGllcyBpcyBjbGVhcmx5IGlkZW50aWZpZWQgYW5kIHJlY29nbml6ZWQgaW4gdGhlIHRleHQgb3IKY29udGVudCBvZiB0aGUgZG9jdW1lbnQgZGVsaXZlcmVkLgoKSWYgdGhlIGRvY3VtZW50IHN1Ym1pdHRlZCBpcyBiYXNlZCBvbiBmdW5kZWQgb3Igc3VwcG9ydGVkIHdvcmsKYnkgYW5vdGhlciBpbnN0aXR1dGlvbiBvdGhlciB0aGFuIHRoZSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBSaW8gR3JhbmRlIGRvIE5vcnRlLCBkZWNsYXJlcyB0aGF0IGl0IGhhcyBmdWxmaWxsZWQgYW55IG9ibGlnYXRpb25zIHJlcXVpcmVkIGJ5IHRoZSByZXNwZWN0aXZlIGFncmVlbWVudCBvciBhZ3JlZW1lbnQuCgpUaGUgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUmlvIEdyYW5kZSBkbyBOb3J0ZSB3aWxsIGNsZWFybHkgaWRlbnRpZnkgaXRzIG5hbWUgKHMpIGFzIHRoZSBhdXRob3IgKHMpIG9yIGhvbGRlciAocykgb2YgdGhlIGRvY3VtZW50J3MgcmlnaHRzCmRlbGl2ZXJlZCwgYW5kIHdpbGwgbm90IG1ha2UgYW55IGNoYW5nZXMsIG90aGVyIHRoYW4gdGhvc2UgcGVybWl0dGVkIGJ5CnRoaXMgbGljZW5zZQo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-08-19T12:15:32Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
dc.title.alternative.pt_BR.fl_str_mv Estudo comparativo de técnicas de iluminação de objetos virtuais em imagens de realidade aumentada usando transformação de image-para-image
title A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
spellingShingle A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
Curinga, Artur Maricato
Augmented Reality
Neural Networks
Illumination
Realidade Aumentada
Redes Neurais
Iluminação
title_short A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
title_full A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
title_fullStr A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
title_full_unstemmed A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
title_sort A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images
author Curinga, Artur Maricato
author_facet Curinga, Artur Maricato
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6740272956017842
dc.contributor.advisorID.pt_BR.fl_str_mv https://orcid.org/ 0000-0002-8056-1101
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4022950700003347
dc.contributor.referees1.none.fl_str_mv Santos, Selan Rodrigues dos
dc.contributor.referees1ID.pt_BR.fl_str_mv https://orcid.org/0000-0002-8056-1101
dc.contributor.referees1Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4022950700003347
dc.contributor.referees2.none.fl_str_mv Thomé, Antônio Carlos Gay
dc.contributor.referees2Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9282046098909851
dc.contributor.referees3.none.fl_str_mv Carvalho, Bruno Motta de
dc.contributor.referees3ID.pt_BR.fl_str_mv https://orcid.org/0000-0002-9122-0257
dc.contributor.referees3Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0330924133337698
dc.contributor.referees4.none.fl_str_mv Campos, André Maurício Cunha
dc.contributor.referees4Lattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7154508093406987
dc.contributor.author.fl_str_mv Curinga, Artur Maricato
dc.contributor.advisor-co1.fl_str_mv Thomé, Antônio Carlos Gay
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9282046098909851
dc.contributor.advisor1.fl_str_mv Santos, Selan Rodrigues dos
contributor_str_mv Thomé, Antônio Carlos Gay
Santos, Selan Rodrigues dos
dc.subject.por.fl_str_mv Augmented Reality
Neural Networks
Illumination
Realidade Aumentada
Redes Neurais
Iluminação
topic Augmented Reality
Neural Networks
Illumination
Realidade Aumentada
Redes Neurais
Iluminação
description This work is a comparison study between two Deep Neural Network (DNN) models in the augmented reality context, aiming to produce visually coherent augmented indoor images with a virtual object inserted. We trained DNN models to generate coherent shadows and illumination for an unlit object given a computer generated photorealistic indoor environment as a reference. The goal is to add the artificially lit object to the reference scene and make it blend in nicely when seen by an human viewer unaware of the interference. We develop a dataset Indoor Shadows with 4826 set of images from the 3D-Front scene dataset, in order to use it as our benchmark. The Pix2Pix and ShadowGAN were trained using the SGD, and Adam, and compared regarding the generated images with a ground truth. We used the L1, L2, and MSSIM metrics to evaluate the results of the trained models. We found that the ShadowGAN trained with Adam had the best results regarding the MSSIM metric and the Pix2Pix trained with SGD and the best results with L1, and L2. We concluded that both techniques are very limited, and the generated images are easily distinguishable from the ground truth.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-07-29T11:53:07Z
dc.date.available.fl_str_mv 2022-07-29T11:53:07Z
dc.date.issued.fl_str_mv 2022-07-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CURINGA, Artur Maricato. A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images. 2022. 40 f. TCC (Graduação) - Curso de Ciência da Computação, Dimap - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/48844
identifier_str_mv CURINGA, Artur Maricato. A Comparative Study of Image-to-Image Translation Techniques for Virtual Object Illumination in Augmented Images. 2022. 40 f. TCC (Graduação) - Curso de Ciência da Computação, Dimap - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2022.
url https://repositorio.ufrn.br/handle/123456789/48844
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.publisher.program.fl_str_mv Ciência da Computação
dc.publisher.initials.fl_str_mv UFRN
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DIMAp - Departamento de Informática e Matemática Aplicada
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/48844/9/license.txt
https://repositorio.ufrn.br/bitstream/123456789/48844/8/license_rdf
https://repositorio.ufrn.br/bitstream/123456789/48844/7/ComparativeStudyofImage_Curinga_2022.pdf
bitstream.checksum.fl_str_mv e9597aa2854d128fd968be5edc8a28d9
4d2950bda3d176f570a9f8b328dfbbef
915fa4523415935003c025c92126f02e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832697868025856